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Fig. 1. This paper presents a computational pipeline for the inverse design of alignable lamella gridshells, which are deployable grid structures capable of
collapsing into a planar curved strip. These structures can find applications in architecture, facilitating transportation and installation processes.

Alignable lamella gridshells are 3D grid structures capable of collapsing

into a planar strip. This feature significantly simplifies on-site assembly

and also ensures compactness for efficient transport and storage. However,

designing these structures still remains a challenge. This paper tackles the

inverse design problem of alignable lamella gridshells leveraging concepts

from differential geometry and Cartan’s theory of moving frames. The

study unveils that geodesic alignable gridshells, where lamellae are disposed

tangentially to the surface, are limited to forming shapes isometric to surfaces

of revolution. Furthermore, it demonstrates that alignable gridshells with

lamellae arranged orthogonally to a surface can be realized only on a specific

class of surfaces that meet a particular curvature condition along their

principal curvature lines. Finally, drawing on these theoretical findings, this

work introduces novel computational tools tailored for the design of these

structures.
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1 INTRODUCTION
Gridshells are architectural structures that combine the mechanical

efficiency of a continuous shell with the construction simplicity

of a grid-like structure. Conventional gridshells are assembled by

connecting rigid beam elements at joints to form a given shape.

However, this construction process typically involves temporary

supports, impacting overall cost. An alternative solution are de-
ployable elastic gridshells, which can be assembled in a planar state
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and brought into shape through elastic deformation of beams and

rotations at connection joints. This deployment is typically achieved

through lifting or other point-wise actuation methods. Moreover, if

the planar state is sufficiently compact, the structure can be assem-

bled off-site and transported with ease.

The final shape assumed by a deployable elastic gridshell is deter-

mined by its planar layout and also by the mechanical properties of

its beams. This complex interplay makes designing these structures

a challenging task. A possible design strategy involves the integra-

tion of physical simulation techniques with optimization algorithms,

as shown in the work of Panetta et al. [2019]. The main advantage

of this methodology lies in its ability to capture the actual behavior

of the structure. However, simulation-based approaches have some

drawbacks, including high computational costs and limitations in

handling inverse design tasks (i.e., finding a beam layout given a

deployed shape).

When beams have a marked flat profile, assuming the form of

‘lamellae’, it becomes possible to determine the deployed shape

through purely geometric considerations. Indeed, for such beams

we can make the assumptions of inextensibility and resistance to

bending only along the wider cross-sectional direction. For instance,

under these assumptions, a straight lamella bent with its width

arranged orthogonally to a surface follows an asymptotic curve.

Conversely, when the same lamella is disposed tangentially to a

surface, its axis traces a geodesic curve. More generally, the axes

of lamellae disposed on a surface with a consistent orientation

yield a network of curves with specific geometric properties. In

the following, we refer to these structures as lamella gridshells.
Although a geometric approach to designing lamella gridshells may

have limitations in terms of physical accuracy, it involves simpler

computations and facilitates inverse design. Additionally, it can

serve as an initial step for simulation-based methodologies like

[Panetta et al. 2019].
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A notable category of deployable lamella gridshells, which can

be designed with a purely geometric approach, relates to alignable
nets. Recently introduced by Tellier [2022a,b], alignable nets are

quadrilateral networks of curves interconnected at joints, capable

of collapsing into a line while preserving their lengths. By imposing

constraints on the normal or geodesic curvatures of an alignable net,

it becomes possible to capture the behavior of deployable lamella

gridshells. For instance, geodesic and asymptotic alignable nets

can serve as axes of lamella gridshells that collapse into a straight

segment, while enforcing a constant normal curvature results in

lamella gridshells that collapse into a circular arc.

However, while alignable nets can locally cover arbitrary sur-

faces, imposing constraints on the normal and geodesic curvatures

introduces limitations on the range of shapes effectively covered by

these nets. Understanding these shape constraints is crucial for en-

abling the inverse design of alignable lamella gridshells: Indeed, this

approach allows us to split the design process into a first surface op-

timization step followed by curves tracing, overcoming challenges

associated with an unknown beam layout.

A special subset of alignable nets are the so-called Chebyshev nets,

characterized by equal curve lengths between joints. In their recent

work, Liu et al. [2023] outlined the classes of surfaces on which

Chebyshev nets with constrained normal curvature exist. These nets

permit the extraction of lamella gridshells disposed orthogonally to

the surface and capable of collapsing into a planar curve. However,

the corresponding classes of surfaces on which generic alignable

nets exist still remain undefined.

To address this gap, this work focuses on the inverse design of

generic alignable lamella gridshells. First, it outlines the classes

of surfaces which can be covered by geodesic alignable nets and

alignable nets with constrained normal curvature, thus allowing

the extraction of lamella gridshells capable of collapsing into planar

curves. Then, exploiting these insights, this work introduces com-

putational pipelines tailored to the design of such alignable lamella

gridshells.

Gridshells

Lamella

Chebyshev

Alignable

Deployable

Fig. 2. Classification of grid-
shells adopted in this paper.
Alignable lamella gridshells are
highlighted in red.

1.1 Related work
1.1.1 Deployable structures. This research is situated within the

domain of optimization-based design for deployable shell structures.

In this context, various systems have been proposed for deploying

shell structures from planar or compact configurations. Examples

include pre-tensioned membranes [Guseinov et al. 2017; Pérez et al.

2017], scissor mechanisms [Ren et al. 2022; Van Mele et al. 2010],

inflatable tube structures [Panetta et al. 2021], auxetic materials

[Chen et al. 2021; Konaković et al. 2016], bending active patterns

[Laccone et al. 2021], and 2D strip patterns [Hong et al. 2022; Mhatre

et al. 2021].

Closely related to deployable elastic gridshells is the work by

Panetta et al. [2019]. They propose a computational method that

takes as input a planar grid of straight beams with specified cross-

sections. Their pipeline begins with simulating the deployment of

the grid, considering the elastic energy stored in the beams. Sub-

sequently, the planar grid is optimized for target functions such as

minimal elastic energy and fitting to a predefined shape by com-

puting derivatives with respect to the planar configuration. This

methodology has been extended to address deployable gridshells

with curved beams in [Becker et al. 2023]. This last work introduces

an additional inverse design procedure that relies on preserving

lengths within a predetermined connectivity.

1.1.2 Lamella gridshells. Lamella gridshells are structures com-

posed of developable or nearly-developable strips arranged in a grid

forming a 3D surface. The computational design of these structures

draws upon tools from differential geometry of curve networks on

surfaces and their discrete equivalents, systematically explored in

[Bobenko and Suris 2008].

Geodesic gridshells, characterized by lamellae tangent to the

surface, have received considerable attention in computational de-

sign for efficient fabrication [Kahlert et al. 2011; Pottmann et al.

2010]. In this context, Wang et al. [2019] introduced a mesh-based

methodology for generating smooth networks of geodesic curves

on surfaces, well-suited for architectural applications. Asymptotic

gridshells, where lamellae are arranged orthogonally to the sur-

face, have been investigated by Schling et al. [2018]. Subsequently,

Schling et al. [2022] explored hybrid geodesic-asymptotic gridshells,

combining lamellae oriented orthogonally and tangentially to the

surface. Pseudo-geodesic gridshells, composed of straight lamellae

arranged at a given inclination with respect to the surface, have

been addressed in [Wang et al. 2023].

Besides straight lamellae, Ren et al. [2021] explored gridshells

constructed by weaving curved lamellae tangentially to the surface,

while Pellis et al. [2020] investigated gridshells made of circular

lamellae arranged orthogonally to the surface, using a mesh dis-

cretization approach. Furthermore, Hafner and Bickel [2021] inves-

tigated the use of lamellae with varying width, following elastic

curves.

1.1.3 Chebyshev nets. The simplest category of geometrically de-

ployable elastic gridshells is based on regular grids, which are curve

networks where the lengths between adjacent joints are equal. These

structures, called Chebyshev nets, derive their name from the math-

ematician Pafnutij Chebyshev, who investigated surface covering

techniques using fabrics [Chebyshev 1878]. From a geometric stand-

point, a Chebyshev net is an assembly of surface patches that are pa-

rameterized by two unit-speed parameters. Locally, a Chebyshev net

exists around each point of a surface, and patchworks of Chebyshev

nets can approximate arbitrary shapes [Garg et al. 2014; Sageman-

Furnas et al. 2019]. The work by Masson and Monasse [2017] has

recently demonstrated that it is always possible to cover a surface

with a single patch of a Chebyshev net, provided the integral of

its Gaussian curvature is less than 2𝜋 . The orientation of a single
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Fig. 3. (a) ‘Mannheim Multihalle’: The structure shapes a Chebyshev net. The deployment alters the curvature of the beams and the angles of the net. The
final shape is achieved by securing the boundary in a predetermined position (CC BY 3.0 H. Berberich). (b) A lamella gridshell based on an asymptotic
Chebyshev net, from [Liu et al. 2023]. Such a net exists only on surfaces with constant negative Gaussian curvature (𝐾-surfaces). (c) A geodesic alignable net
with rotational symmetry, from [Tellier 2022a]. (d) ‘Kinetic Umbrella’ by Jonas Schikore and Eike Schling. This mechanism leverages an asymptotic alignable
net with rotational symmetry (© J. Schikore).

patch on a given surface is constrained by the underlying hyperbolic

equations, allowing for the specification of its orientation along only

two of its boundaries.

A pioneering example of an elastic deployable gridshell based on

a Chebyshev net is the Mannheim ‘Multihalle’, designed by Otto

Frei and built in 1975 (see Figure 3a). Recent applications include

the gridshell for the Solidays festival in Paris [Naicu et al. 2014]

and the the ‘Ephemeral Cathedral’ of Créteil [Du Peloux et al. 2015].

In this kind of gridshells, during deployment beams maintain their

lengths while experiencing changes in their geodesic and normal

curvatures.

By constraining the geodesic or normal curvatures of a Chebyshev

net, we can model deployable lamella gridshells. It is well-known

that a geodesic Chebyshev net can only shape developable surfaces,

while asymptotic Chebyshev nets exist only on surfaces with con-

stant negative Gaussian curvature, called 𝐾-surfaces (see Figure 3b).

Chebyshev nets with constant normal curvature have been the focus

of recent investigation [Liu et al. 2023]. In this study, the authors es-

tablish that such nets exist exclusively on linearWeingarten surfaces

of hyperbolic type, which are offsets of 𝐾-surfaces. These nets, if

materialized with lamellae disposed orthogonally to the surface, can

be collapsed into a planar circular strip. This work also demonstrates

that normal curvature-preserving Chebyshev nets, which collapse

into a generic planar curve, are surprisingly more constrained as

they can only shape rotational and cylindrical surfaces.

1.1.4 Alignable nets. By relaxing the constraint of equal lengths

between joints, we encounter a broader category of deployable

curve networks known as alignable nets. These nets are defined by

the property that any quadrilateral loop of curves between joints

can be collapsed into a single line, without altering the lengths of

the curves. Alignable nets have been introduced in recent works

by Tellier [2022a,b]. In these studies, the alignability of a net is

characterized through the coefficients of the first fundamental form

of a surface parametrization and their derivatives. These works

also present simple examples of geodesic alignable nets built on

surfaces of revolution (see Figure 3c). Similarly, Jonas Schikore and

Eike Schling employed an asymptotic alignable net with rotational

symmetry for their ‘Kinetic Umbrella’ [Schling and Schikore 2023]

(see Figure 3d).

Soriano et al. [2019] addressed the design of geodesic gridshells

that can be deployed from a flat state while maintaining constant

lengths between joints. In most of the examples presented in their

paper, the planar configuration closely resemble a straight line, sug-

gesting that the resulting net could be considered approximately

alignable. Their method involves approximating a target surface us-

ing an elastic gridshell with predetermined connectivity, leveraging

length preservation.

Another noteworthy approach for designing ‘closely-alignable’

geodesic gridshells has been introduced by Pillwein et al. [2020].

While this method effectively approximates a given target shape and

its boundaries, it does not preserve lengths between joints during the

deployment, necessitating the introduction of sliding connections.

1.2 Overview and contribution
This work investigates the design of alignable lamella gridshells by

exploring the geometric properties of alignable nets and the surfaces

they define.

Section 2 provides a concise overview of curves on surfaces and

their analysis using Cartan’s method of moving frames. Then, it

introduces a novel approach for investigating non-orthogonal curve

nets based on a double moving frame.

Section 3 delves into the differential geometry of alignable nets

through the application of the double moving frame framework.

After establishing the necessary conditions for a curve net to be

alignable, this section systematically investigates the conditions

under which a surface permits the existence of geodesic alignable

nets and normal curvature-preserving alignable nets (see Figure 4).

The latter include constant normal curvature and asymptotic nets.

To the best of the author’s knowledge, these conditions are presented

here for the first time. A summary of the contributions of this section,

compared to the known equivalent conditions for Chebyshev nets,

is provided in Table 1.

In Section 4, two computational methods for designing alignable

lamella gridshells are presented, each tailored to a specific class of

lamellae. The first method, designed for geodesic lamellae, utilizes

a state-of-the-art technique [Wang et al. 2019], while the second

method, developed for normal curvature-preserving lamellae, in-

corporates a novel implementation based on a previous approach

developed for Weingarten surfaces [Pellis et al. 2021]. This section

also introduces a method for curves tracing based on level-sets of a

B-spline function, a post-optimization procedure based on a mesh
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Table 1. Conditions for the existence of alignable nets in relation to the net
surface. Conditions established in prior works are represented in black, while
the conditions demonstrated in this study are highlighted in yellow. None =
no constraints of curvatures. GG = geodesic net, AA = asymptotic net, CNC
= constant normal curvature net, NCP = normal curvature-preserving net.

Chebyshev Alignable
None All surfaces All surfaces

GG Developable Theorem 1

AA 𝐾-surfaces Corollary 3

CNC Hyperbolic linear Weingerten Corollary 2

NCP Cylindrical and rotational Theorem 2

GG NCP

Fig. 4. On the left : A geodesic (GG) alignable gridshell collapses into a
straight strip. On the right : A normal curvature-preserving (NCP) alignable
gridshell collapses into a strip shaping a planar curve. This latter type
encompasses both constant normal curvature (CNC) and asymptotic (AA)
alignable gridshells, collapsing respectively in a circular and a straight strip.

discretization, and a deployment simulation which leverages geo-

metric constraints. Finally, in Section 5, the achieved results are

presented and discussed.

2 CURVE NETS
To study alignable nets, we leverage Cartan’s theory of moving

frames. At the core of this methodology lies the use of differential

forms to study the evolution of a unit tangent frame along a curve

net on a surface. A notable advantage of this formulation is that all

derived quantities comewith well-defined geometric interpretations,

offering valuable insights for our investigation. For readers who

may be unfamiliar with differential forms, a concise introduction is

provided in Appendix A — recommended before proceeding to this

section. For a more in-depth understanding of Cartan’s theory of

surfaces, readers can consult textbooks such as [O’Neill 2006] and

[Needham 2021].

2.1 Notation
This study focuses on smooth curves, denoted by C, and smooth

surfaces, denoted by S, embedded in Euclidean space. Points in

space are represented by uppercase Roman letters, such as 𝑃 and

𝑄 . Scalar values, including angles, are denoted by lowercase letters

— both Greek and Roman
1
. Vectors are represented by lowercase

bold Roman letters, such as v and w, while forms are indicated by

lowercase bold Greek letters, like 𝝎 and 𝝂 .

1
In adherence to notation conventions, exceptions include the Gaussian and mean

curvature of a surface, as well as the coefficients of parametrization fundamental forms,

indicated using uppercase Roman letters.

At any point 𝑃 ∈ S, the tangent plane of the surface is denoted as
𝑇S𝑃

, and its dual space as𝑇 ∗
S𝑃

. Unit basis vectors of𝑇S𝑃
are denoted

as e𝑖 , and dual-basis 1-forms of𝑇 ∗
S𝑃

are denoted as 𝜼𝑖 . In the case of

an orthonormal basis for 𝑇S𝑃
, the associated dual-basis 1-forms are

specifically labeled as 𝜽 𝑖 . The exterior derivative operator on forms

is denoted by d, and the wedge product of forms is denoted by ∧.
Throughout the text, all quantities defined on a curve C or a

surface S, including scalars, vectors, and forms, are assumed to be

smooth functions of the corresponding point 𝑃 . This dependence is

omitted for conciseness.

2.2 Curves: The Frenet-Serret frame
Let C = 𝑃 (𝑠) be a curve parameterized by a unit-speed parameter 𝑠 ,

ensuring then ∥𝑃 ′∥ = 1, where prime indicates differentiation with

respect to 𝑠 . At each point 𝑃 of this curve, the unit tangent vector t
is defined as t = 𝑃 ′. We proceed by defining a second unit vector

n, called the principal normal, as n = t′/∥t′∥. Since the vector t is
unitary, it shall be orthogonal to the vector n. Finally, we define a
third unit vector b as b = t × n, called the binormal. In this way, at

each point 𝑃 , we establish the orthonormal frame (t, n, b), commonly

known as the Frenet-Serret frame.
At each point 𝑃 , the quantity 𝜅 = ∥t′∥ is called the curvature,

representing the rotation rate of the vector t towards n as the point

𝑃 moves along the curve at unit speed. By symmetry, the vector

n rotates toward t with rate −𝜅. The rotation rate of the vector n
towards the binormal b is called the torsion and is denoted as 𝜏 . Since
the rotation of t is null towards b, by symmetry we get 𝜏 = −∥b′∥.
Summarizing, we have:

t′ = 𝜅 n, n′ = −𝜅 t + 𝜏 b, b′ = −𝜏 n. (2.1)

Let us now introduce a dual-basis d𝑠 in the tangent line of the

curve at 𝑃 , such that d𝑠 (t) = 1. We can now define the exterior

derivative of the point 𝑃 as d𝑃 = 𝑃 ′d𝑠 , resulting in a vector where

each component is the exterior derivative of the corresponding

component of 𝑃 . Similarly, we can define the exterior derivatives of

the Frenet-Serret frame as:

dt = t′d𝑠, dn = n′d𝑠, db = b′d𝑠 . (2.2)

Consider now a generic curve parametrization C = 𝑃 (𝑟 ). Let then
d𝑟 be the dual-basis of 𝑃 ′, such that d𝑟 (𝑃 ′) = 1. To recover the

geometric quantities given by a unit-speed parametrization, we can

compute the unit tangent vector as t = 𝑃 ′/∥𝑃 ′∥, and introduce the

dual-basis 1-form 𝜽 associated with t, such that 𝜽 (t) = 1. This is

achieved by setting 𝜽 = ∥𝑃 ′∥ d𝑟 . Conceptually, the 1-form 𝜽 acts

as a ‘ruler’, measuring the length of a vector tangent to the curve.

From Equations 2.1 and 2.2, we can express the exterior derivatives

of the Frenet-Serret frame in matrix form, without considering a

specific parametrization, as:

©­­«
dt
dn
db

ª®®¬ =
©­­«

0 𝜅 𝜽 0

−𝜅 𝜽 0 𝜏 𝜽

0 −𝜏 𝜽 0

ª®®¬
©­­«
t
n
b

ª®®¬ . (2.3)
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2.3 Curves on surfaces: The Darboux frame
Now, consider a curve C embedded in a surface S. At every point 𝑃

along this curve, the tangent vector t naturally lies in the tangent

plane𝑇S𝑃
. We can then construct a new frame (e1, e2, e𝑛), called the

Darboux frame, as follows: Let e1 coincide with the tangent vector t,
define e2 as the unit vector obtained by rotating e1 counterclockwise

by 90
◦
in the tangent plane 𝑇S𝑃

, and set e𝑛 as the surface normal

given by e𝑛 = e1 × e2, as illustrated in Figure 5.

The set {e1, e2} forms an orthonormal basis of 𝑇S𝑃
. Let {𝜽 1, 𝜽 2}

represent the corresponding dual-basis of 𝑇 ∗
S𝑃

. Notably, 𝜽 1 (t) = 1.

Thus, we can express the exterior derivatives of Equation 2.3 by

substituting 𝜽 with 𝜽 1
. It’s essential to note that all quantities are

here defined solely along the curve C.
Let 𝜙 denote the angle that aligns the vectors n and e2 through a

rotation around t (see Figure 5). Then, we have:

e2 = cos𝜙 n + sin𝜙 b, and e𝑛 = − sin𝜙 n + cos𝜙 b. (2.4)

By taking the exterior derivatives of the Darboux frame and utilizing

relations 2.4 alongside the Frenet-Serret equations 2.3, we obtain:

©­­«
de1

de2

de𝑛

ª®®¬ =
©­­«

0 𝑔 𝜽 1 𝑛 𝜽 1

−𝑔 𝜽 1
0 𝑡 𝜽 1

−𝑛 𝜽 1 −𝑡 𝜽 1
0

ª®®¬
©­­«
e1

e2

e𝑛

ª®®¬ , (2.5)

with

𝑛 = −𝜅 sin𝜙, (2.6)

𝑔 = 𝜅 cos𝜙, (2.7)

𝑡 = 𝜏 + d𝜙 (e1) . (2.8)

Here, 𝑛, 𝑔, and 𝑡 are respectively termed the normal curvature, the
geodesic curvature, and the geodesic torsion of the curve C with

respect to the surface S.
At a point 𝑃 of S, the extreme values that the normal curvature

𝑛 of a curve passing through 𝑃 can attain are called principal cur-
vatures, denoted as 𝜅I , 𝜅II . It can be shown [do Carmo 1976] that

these two values occur along two orthogonal tangent directions,

called principal curvature directions. Let then 𝛽 be the angle that a

curve tangent vector e1 makes with the principal curvature direction

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

SSSSSSSSSSSSSSSSS
CCCCCCCCCCCCCCCCC

e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛e𝑛

t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1t ≡ e1

e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2

nnnnnnnnnnnnnnnnn

bbbbbbbbbbbbbbbbb

𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙
Fig. 5. Frenet-Serret
frame (t, n, b) and Dar-
boux frame (e1, e2, e𝑛 )
of a curve C at a point 𝑃
on a surface S. The two
frames are aligned by a
rotation 𝜙 around the
vector t ≡ e1.

corresponding to 𝜅I . Euler’s formulas state that:

𝑛 = 𝜅I cos
2 𝛽 + 𝜅II sin

2 𝛽,

𝑡 = (𝜅I − 𝜅II ) sin 𝛽 cos 𝛽.
(2.9)

The product of principal curvatures 𝐾 = 𝜅I𝜅II is called the Gaussian
curvature of the surface. Their mean value 𝐻 = (𝜅I +𝜅II )/2 is called

mean curvature.
The vanishing of one of the relative curvatures 𝑛, 𝑔, and 𝑡 , defines

three distinct types of special curves that exist on surfaces:

Definition 1. An asymptotic curve is a surface curve where 𝑛 = 0,
or equivalently 𝜙 = 0.

Since their curvature in the normal direction vanishes, along

asymptotic curves it is possible to dispose a straight lamella orthog-

onally to the surface S, as shown if Figure 6 left.

Definition 2. A geodesic curve is a surface curve where 𝑔 = 0, or
equivalently 𝜙 = ±𝜋/2.

In this case, the curve has vanishing curvature in the surface

tangent plane, and it is possible to dispose along it a straight lamella

oriented tangentially to the surface, as shown in Figure 6 center.

Definition 3. A principal curvature line is a surface curve where
𝑡 = 0. For such a curve, the normal curvature 𝑛 coincides with one of
the two principal curvatures 𝜅I , 𝜅II .

𝑛 = 0 𝑔 = 0

CCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCC

SSSSSSSSSSSSSSSSS SSSSSSSSSSSSSSSSS

Fig. 6. On the left : Along an asymptotic curve, it is possible to dispose
the straight lamella shown on the right perpendicular to the surface. In
the center : Along a geodesic curve, the straight lamella can be disposed
tangentially to the surface.

2.4 Orthogonal curve nets: The Cartan frame
Let C1

and C2
denote two families of curves covering a surface

S, mutually orthogonal at each point 𝑃 on S. At every point 𝑃 ,

construct a positively oriented orthonormal frame (e1, e2, e𝑛), where
e1 and e2 represent the unit tangent vectors of curves C1

and C2
,

respectively, and e𝑛 is the unit surface normal. Ensure that, at each

point, the tangents to the curves maintain consistent orientation for

both families C1
and C2

across the entire surfaceS. By construction,
the frame (e1, e2, e𝑛) forms the Darboux frame for curves C1

, while

the frame (e2,−e1, e𝑛) constitutes the Darboux frame for curves

C2
. The set {e1, e2} serves as an orthonormal basis for the tangent

plane 𝑇S𝑃
. Let {𝜽 1, 𝜽 2} denote the corresponding dual-basis.

At each point 𝑃 , we now encounter two curves, each belonging to

either C1
or C2

. The dual-basis 1-forms 𝜽 1
and 𝜽 2

now measure the
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lengths of tangent vectors belonging to 𝑇S𝑃
along the correspond-

ing curve tangent. This also enables us to represent the rotation

of the Darboux frame along every direction of 𝑇S𝑃
by summing

the contributions in the two curve directions e1 and e2. Writing

Equations 2.5 for both curves, and considering the inversion of the

Darboux frame for the curve from C2
, we can express the rotation

of the Darboux frame as follows:

©­­«
de1

de2

de𝑛

ª®®¬ =
©­­«

0 𝑔1𝜽 1 + 𝑔2𝜽 2 𝑛1𝜽 1 − 𝑡2𝜽 2

−𝑔1𝜽 1 − 𝑔2𝜽 2
0 𝑡1𝜽 1 + 𝑛2𝜽 2

−𝑛1𝜽 1 + 𝑡2𝜽 2 −𝑡1𝜽 1 − 𝑛2𝜽 2
0

ª®®¬
©­­«
e1

e2

e𝑛

ª®®¬ ,
(2.10)

where 𝑛1, 𝑔1, and 𝑡1 represent respectively the normal curvature,

the geodesic curvature, and the geodesic torsion of the curve from

C1
. Similarly, 𝑛2, 𝑔2, and 𝑡2 denote the same quantities for the curve

from C2
. Equations 2.10 can be concisely written as follows:

©­­«
de1

de2

de𝑛

ª®®¬ =
©­­«

0 𝝎12 𝝎1𝑛

𝝎21 0 𝝎2𝑛

𝝎𝑛1 𝝎𝑛2 0

ª®®¬
©­­«
e1

e2

e𝑛

ª®®¬ , (2.11)

where 𝝎𝑖 𝑗 are called the connection forms of the curve net, with

𝑖, 𝑗 ∈ {1, 2, 𝑛}, and where 𝝎𝑖 𝑗 = −𝝎 𝑗𝑖 . The connection form 𝝎𝑖 𝑗 (v)
expresses the initial rotation rate at which e𝑖 rotates toward e𝑗 as 𝑃
moves with velocity v.
Consider now the second Euler’s equation 2.9. Let 𝛽1 and 𝛽2

denote the angles that vectors e1 and e2 form with the first principal

curvature direction. Since 𝛽1 − 𝛽2 = ±𝜋/2, it follows 𝑡1 = −𝑡2.
Therefore, we can express the connection forms as:

𝝎12 = 𝑔1𝜽
1 + 𝑔2𝜽

2,

𝝎1𝑛 = 𝑛1𝜽
1 + 𝑡1𝜽 2,

𝝎2𝑛 = 𝑡1𝜽
1 + 𝑛2𝜽

2 .

(2.12)

We aim now to express the exterior derivatives of connection

and dual-basis forms. Considering that the exterior derivative of

the position vector 𝑃 can be represented in the frame basis as

d𝑃 = e1𝜽 1 + e2𝜽 2
, setting dd𝑃 = 0, and using Equations 2.11, yields

the first set of Cartan’s structural equations:

d𝜽 1 = 𝝎12 ∧ 𝜽 2 = 𝑔1 𝜽
1∧ 𝜽 2,

d𝜽 2 = 𝝎21 ∧ 𝜽 1 = 𝑔2 𝜽
1∧ 𝜽 2 .

(2.13)

Similarly, enforcing dde𝑖 = 0, 𝑖 ∈ {1, 2, 𝑛}, leads to the second set of

Cartan’s structural equations:

d𝝎12 = 𝝎1𝑛 ∧ 𝝎𝑛2 = (𝑡2
1
− 𝑛1𝑛2) 𝜽 1∧ 𝜽 2

d𝝎1𝑛 = 𝝎12 ∧ 𝝎2𝑛 = (𝑔1𝑛2 − 𝑔2𝑡1) 𝜽 1∧ 𝜽 2,

d𝝎2𝑛 = 𝝎21 ∧ 𝝎1𝑛 = (𝑔2𝑛1 − 𝑔1𝑡1) 𝜽 1∧ 𝜽 2 .

(2.14)

Form Euler’s equations 2.9, we observe that the first Equation 2.14

tells us that

d𝝎12 = −𝐾 𝜽 1∧ 𝜽 2, (2.15)

where 𝐾 is the Gaussian curvature of the surface S at 𝑃 . This equiv-

alence is also known as the Gauss equation of the surface. The last

two Equations 2.14 are the so-calledMainardi-Codazzi equations. By
taking the exterior derivatives of the connection forms as outlined

in Equations 2.12, substituting Equations 2.13, and evaluating the

2-forms on e1, e2, the Mainardi-Codazzi equations become:

d𝑡1 (e1) − d𝑛1 (e2) = 𝑔1 (𝑛2 − 𝑛1) − 2𝑔2𝑡1,

d𝑛2 (e1) − d𝑡1 (e2) = 𝑔2 (𝑛1 − 𝑛2) − 2𝑔1𝑡1 .
(2.16)

2.5 Non-orthogonal curve nets: The double frame
Let C1

and C3
be two families of curves covering a surface S. To

handle a non-orthogonal curve net, let us introduce two additional

curve families, C2
and C4

, running orthogonally to C1
and C3

,

respectively. At each point 𝑃 ofS, construct two orthonormal frames

(e1, e2, e𝑛) and (e3, e4, e𝑛), with a positive orientation, where e1,

e2, e3, e4 are the unit tangent vectors of the curves C1
, C2

, C3
, C4

respectively, and e𝑛 is the unit surface normal, as shown in Figure 7.

We call this pair of frames a double frame.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

SSSSSSSSSSSSSSSSS

C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1 C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2 C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3 C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4C4

𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃
𝑇S𝑃

e4e4e4e4e4e4e4e4e4e4e4e4e4e4e4e4e4

e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2e2

e1e1e1e1e1e1e1e1e1e1e1e1e1e1e1e1e1
e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3e3

𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼1𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3𝜼3

𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

Fig. 7. On the left : Non-orthogonal curve net composed of curves C1 and
C3, together with the respectively orthogonal curves C2 and C4. On the
right : The corresponding double frame at a point 𝑃 .

At each point 𝑃 , both sets {e1, e2} and {e3, e4} serve as orthonor-
mal bases of𝑇S𝑃

, with corresponding dual-bases denoted as {𝜽 1, 𝜽 2}
and {𝜽 3, 𝜽 4}. The set {e1, e3} constitutes a non-orthogonal, unit-
length basis for𝑇S𝑃

, with the resulting dual-basis denoted as {𝜼1,𝜼3}
(See figure 7). If 𝛼 is the angle between e1 and e3 (positive counter-

clockwise), we can express:

e1 = cos𝛼 e3 − sin𝛼 e4,

e3 = cos𝛼 e1 + sin𝛼 e2 .
(2.17)

Hence, we obtain 𝜽 1 (e3) = 𝜽 3 (e1) = cos𝛼 , 𝜽 2 (e3) = sin𝛼 , and

𝜽 4 (e1) = − sin𝛼 . Utilizing the dual-basis equations A.1, we obtain:

𝜽 1 = 𝜼1 + cos𝛼 𝜼3, 𝜽 2 = sin𝛼 𝜼3,

𝜽 3 = cos𝛼 𝜼1 + 𝜼3, 𝜽 4 = − sin𝛼 𝜼1 .
(2.18)

It follows that

𝜽 1∧ 𝜽 2 = 𝜽 3∧ 𝜽 4 = sin𝛼 𝜼1∧ 𝜼3 . (2.19)

Now, the frames (e1, e2, e𝑛) and (e3, e4, e𝑛) give rise to six connec-
tion forms, as in Equations 2.12, three for each frame. In particular,

the connection form 𝝎34 equals the connection form 𝝎12 plus their

relative rotation expressed by d𝛼 , and vice versa. Therefore,

𝝎34 = 𝝎12 + d𝛼, 𝝎12 = 𝝎34 − d𝛼, (2.20)
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(a proof can be found in [O’Neill 2006] p.325). By considering that

𝑔1 = 𝝎12 (e1) and 𝑔3 = 𝝎34 (e3), plugging Equations 2.17 into Equa-

tions 2.20, we obtain:

𝑔1 = 𝝎34 (e1) − d𝛼 (e1) = 𝑔3 cos𝛼 − 𝑔4 sin𝛼 − d𝛼 (e1),
𝑔3 = 𝝎12 (e3) + d𝛼 (e3) = 𝑔1 cos𝛼 + 𝑔2 sin𝛼 + d𝛼 (e3).

(2.21)

2.6 Derivatives of functions along curve nets
The connection forms of Equations 2.12 encapsulate in their com-

ponents the curvature information of the net curves. These compo-

nents are scalar functions defined on the net surface S. We analyze

now the variation of scalar functions along a curve net, a crucial

aspect for our subsequent investigations.

Consider a generic curve net {C1, C3} on a surface S, along with
a basis {e1, e3} of 𝑇S𝑃

, defined by their respective unit tangent

vectors, and the corresponding dual-basis {𝜼1,𝜼3}. For conciseness,
let (𝑖, 𝑗) = (1, 3) or (3, 1).

Proposition 1. Let 𝝂 = 𝜈1𝜼1 + 𝜈3𝜼3 be a 1-form on S at point 𝑃 .
Then, 𝝂 ∧ 𝜼𝑖 = 0 if and only if 𝜈 𝑗 = 0.

Proof. We have 𝝂 ∧𝜼𝑖 = 𝜈 𝑗 𝜼 𝑗∧𝜼𝑖 . For non-degenerate nets, the
2-form 𝜼 𝑗∧ 𝜼𝑖 never vanishes. □

Proposition 2. Let 𝑓 be a scalar function on S. Then, d𝑓 ∧𝜼𝑖 = 0

for all points 𝑃 ∈ S if and only if the function 𝑓 is constant along
curves C 𝑗 .

Proof. By definition of exterior derivative, the derivative of a

function 𝑓 along the direction e𝑗 is given by d𝑓 (e𝑗 ). Proposition 1

implies here d𝑓 (e𝑗 ) = 0. Since e𝑗 is the tangent vector of curves
C 𝑗 , we conclude that the function 𝑓 remains constant along these

curves. □

Proposition 3. Let 𝑓 and ℎ be scalar functions on S. If d𝑓 = ℎ𝜼𝑖

and d𝜼𝑖 = 0 for all points 𝑃 ∈ S, then both functions 𝑓 and ℎ are
constant along curves C𝑗 .

Proof. We have dd𝑓 = dℎ ∧ 𝜼𝑖 + ℎ d𝜼𝑖 . Since dd𝑓 = 0 by defi-

nition of exterior derivative, d𝜼𝑖 = 0 implies dℎ ∧ 𝜼𝑖 = 0. Also, for

Proposition 1, d𝑓 = ℎ𝜼𝑖 implies d𝑓 ∧ 𝜼𝑖 = 0. Proposition 2 yields

the result. □

Proposition 4. Let 𝑓 be a scalar function on S. Then, d𝑓 (e1) =
d𝑓 (e3) for all points 𝑃 ∈ S if and only if the function 𝑓 is constant
along a family of bisecting curves of C1 and C3 tangent to e1 − e3.

Proof. From linearity of 1-forms, we have d𝑓 (e1) − d𝑓 (e3) =

d𝑓 (e1 − e3) = 0, indicating that the function 𝑓 remains constant

along the direction e1 − e3. Since both e1 and e3 are unit vectors,

the direction e1 − e3 is a bisecting direction of the net. □

3 ALIGNABLE NETS
This section explores the design principles behind alignable lamella

gridshells through the study of alignable nets. For this purpose,

consider a generic curve net {C1, C3} on a surface S. At each point

𝑃 ∈ S, let e1 and e3 represent their respective tangent vectors. From

this net, we can construct a gridshell by selecting a finite number

of curves from both families C1
and C3

. These curves intersect at a

finite number of joints, where the tangent vectors e1 and e3 form

an angle 𝛼 .

A gridshell is considered alignable if, by closing the angle𝛼 at each

joint, it smoothly collapses into a planar curve without changing the

lengths of the curve segments between joints. In a general case, dur-

ing this transformation, the curves are considered ‘flexible’, meaning

they can change their curvature 𝜅 and their torsion 𝜏 . Throughout

the alignment process, the surface S undergoes transformation,

along with changes in the normal curvature 𝑛 and geodesic curva-

ture 𝑔 of the curves relative to the transformed surface.

To design alignable lamella gridshells, we will explore alignable

nets that preserve either the relative curvature 𝑔 or 𝑛 during the

alignment process, as detailed in Section 2. In this scenario, curves

can be materialized using planar lamellae arranged either tangen-

tially or orthogonally to the surface S.
Hereafter, we first identify the necessary properties for a curve

net to yield an alignable gridshell. Then, we utilize the double frame

introduced in Section 2.5 to investigate the geometric prerequisites

for a surface to allow the existence of a curve net with vanishing

geodesic curvature 𝑔 or constrained normal curvature 𝑛.

3.1 Lengths of net curves
Let {C1, C3} be a generic curve net on a surface S, with unit tan-

gent vectors forming a basis {e1, e3} of 𝑇S𝑃
along with a dual-basis

{𝜼1,𝜼3}, as illustrated in Section 2.5. Choose a specific curve of the

net, and consider the segment between two points 𝐴 and 𝐵, both

lying on the curve. Let us denote this oriented segment as C𝑖
𝐴𝐵

,

where 𝑖 = 1, 3 indicates the curve family to which the curve belongs

to. We say that the segment𝐶𝑖
𝐴𝐵

is positively oriented if it is oriented

in the same direction of its tangent vector e𝑖 . Our objective is to
determine the length of the segment, denoted as ℓ𝑖

𝐴𝐵
. To this end, we

observe that, at each point 𝑃 ∈ S, the dual-basis 1-form 𝜼𝑖 measure

the component of a tangent vector of𝑇S𝑃
along the unit basis vector

e𝑖 , and therefore the length of every vector tangent to a curve C𝑖 .
According to Equation A.3, if the segment𝐶𝑖

𝐴𝐵
is positively oriented,

we can then express its length as:

ℓ𝑖𝐴𝐵 =

∫
C𝑖
𝐴𝐵

𝜼𝑖 = −
∫
C𝑖
𝐵𝐴

𝜼𝑖 . (3.1)

Let (𝑖, 𝑗) = (1, 3) or (3, 1). We also observe that∫
C𝑖
𝐴𝐵

𝜼 𝑗 = 0. (3.2)

3.2 Alignability of curve nets
In a curve net {C1, C3}, select four curves, two from each family.

Let R be the quadrilateral surface region R bounded by the four

curves, with corners 𝐴, 𝐵, 𝐶 , and 𝐷 as shown in Figure 8. Let then

ACM Trans. Graph., Vol. 43, No. 6, Article 183. Publication date: December 2024.



183:8 • Davide Pellis

𝜕R be the boundary of the region R, composed by curve segments

C1

𝐴𝐵
, C3

𝐵𝐶
, C1

𝐶𝐷
, C3

𝐷𝐴
. We call such a union of curves 𝜕R a net-loop.

Definition 4. A net-loop 𝜕R is alignable if ℓ1

𝐴𝐵
+ℓ3

𝐵𝐶
= ℓ3

𝐴𝐷
+ℓ1

𝐷𝐶
.

A curve net is alignable if all of its net-loops are alignable.

RRRRRRRRRRRRRRRRR

SSSSSSSSSSSSSSSSS

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1 C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3

Fig. 8. Alignable net-loop. On the left : A net-loop 𝜕R between joints 𝐴, 𝐵,
𝐶 , and 𝐷 bounding a surface region R. On the right : Aligned net-loop. The
alignment requires ℓ1

𝐴𝐵
+ ℓ3

𝐵𝐶
= ℓ3

𝐴𝐷
+ ℓ1

𝐷𝐶
.

If a curve net is alignable, it follows that all gridshells extracted

from the net will also be alignable. We look now into the condition

for a curve net to be alignable. To this end, let e1, e3 be the unit

tangent vectors of curves C1
, C3

, with dual-basis {𝜼1,𝜼3}. Then:

Proposition 5. A curve net on a surface S is alignable if and only
if, at all points 𝑃 ∈ S,

d𝜼1 + d𝜼3 = 0.

Proof. Let us consider a net-loop 𝜕R, oriented in direction𝐴𝐵𝐶𝐷 ,

with C1

𝐴𝐵
and C3

𝐵𝐶
positively oriented. According to Equations 3.1

and 3.2, we have:

ℓ1

𝐴𝐵 − ℓ1

𝐷𝐶 =

∫
𝜕R

𝜼1
and ℓ3

𝐵𝐶
− ℓ3

𝐴𝐷
=

∫
𝜕R

𝜼3 .

Applying Stokes’ theorem and imposing the alignability condition

of Definition 4, yields:∫
𝜕R

𝜼1 + 𝜼3 =

∫
R
d𝜼1 + d𝜼3 = 0, for all net-loops 𝜕R . (3.3)

The last equality holds for all net-loops 𝜕R if d𝜼1 + d𝜼3 = 0 at all

points 𝑃 ∈ S. Proposition 8 in Appendix B shows that this condition

is not only sufficient but also necessary. □

We now establish a second condition for the alignability of the

curve net, one that incorporates the geodesic curvatures of the

curves and the angle between them:

Proposition 6. Consider a curve net {C1, C3} on a surface S. At
each point 𝑃 ∈ S, let 𝑔1 and 𝑔3 denote the geodesic curvatures of the
curves passing through that point, and e1 and e3 be their respective
tangent vectors, forming an angle 𝛼 . The curve net is alignable if and
only if, at every point 𝑃 ,

d𝛼 (e1) + 𝑔1 = d𝛼 (e3) − 𝑔3 . (3.4)

Proof. Consider a double frame associated with the curve net,

as detailed in Section 2.5. By computing the exterior derivatives of

𝜽 1
and 𝜽 3

from Equations 2.18, we get:

d𝜽 1 = d𝜼1 + cos𝛼 d𝜼3 − sin𝛼 d𝛼 ∧ 𝜼3,

d𝜽 3 = d𝜼3 + cos𝛼 d𝜼1 − sin𝛼 d𝛼 ∧ 𝜼1 .
(3.5)

Consider now the first Cartan structural equations 2.13. Using Equa-

tion 2.19, we can write:

d𝜽 1 = 𝑔1 sin𝛼 𝜼1∧ 𝜼3
and d𝜽 3 = 𝑔3 sin𝛼 𝜼1∧ 𝜼3 . (3.6)

Next, summing Equations 3.5 and considering that

d𝛼∧ 𝜼3 = d𝛼 (e1) 𝜼1∧ 𝜼3, d𝛼 ∧ 𝜼1 = −d𝛼 (e3) 𝜼1 ∧ 𝜼3,

by substituting Equations 3.6 we find:

(𝑔1 + 𝑔3 + d𝛼 (e1) − d𝛼 (e3)) 𝜼1∧ 𝜼3 = cot

𝛼

2

(d𝜼1 + d𝜼3).

Since, for non-degenerate nets, both 𝜼1∧ 𝜼3
and 𝛼 never vanish,

this yields the desired result. □

Consider now a Chebyshev net, which is an alignable net where

all lengths of curves segments are equal. In this case, we can state

that:

Definition 5. A Chebyshev net is a net where, for all net-loops,
ℓ1

𝐴𝐵
= ℓ1

𝐶𝐷
and ℓ2

𝐴𝐷
= ℓ2

𝐵𝐶
.

Proposition 7. A curve net {C1, C3} on a surfaceS is a Chebyshev
net if and only if, at all points 𝑃 ∈ S,

d𝜼1 = 0 and d𝜼3 = 0.

Moreover, being 𝑔1 and 𝑔3 the geodesic curvatures of the curves of the
net, and 𝛼 the angle between them, it holds

𝑔1 = −d𝛼 (e1) and 𝑔3 = d𝛼 (e3). (3.7)

Proof. It follows from the proof of Proposition 5 and from Equa-

tions 3.5. □

Propositions 6 and 7 provide insights into the degrees of freedom

involved in constructing alignable and Chebyshev nets: On a surface

S, trace two arbitrary curves C1

0
and C3

0
from a point 𝑃 . In case of

a Chebyshev net, according to Equation 3.7, the angle 𝛼 along the

curves C1

0
and C3

0
is now determined by integrating their geodesic

curvatures 𝑔1 and 𝑔3 starting from 𝑃 . These angles 𝛼 now determine

the geodesic curvatures of all curves C1
at intersection with the

curve C3

0
and vice versa. With Equation 3.7 we can then integrate

the full net. In case of an alignable net, Equation 3.4 indicates that

there remains the freedom to choose the angle 𝛼 along one family

of curves. This means that the net is determined by an arbitrary

family of curves and a single arbitrary curve from the other family.

3.3 Geodesic alignable nets
In this section, we investigate alignable nets where both families

of curves C1
and C3

are geodesics. In this case, the net allows the

extraction of a gridshell where curves can be materialized with

straight lamellae arranged tangentially to the net surface S. How-
ever, this condition imposes a restriction on the shape of the surface

S. In particular:

ACM Trans. Graph., Vol. 43, No. 6, Article 183. Publication date: December 2024.



Alignable Lamella Gridshells • 183:9

Theorem 1. A geodesic alignable net exists only and on all surfaces
that can be isometrically mapped to surfaces of revolution. There, the
net is symmetric to curves that map to meridians under the isometry.
Additionally, the angle between curves of the net is constant along
curves that map to parallel circles under the same isometry.

C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1 C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3 C6C6C6C6C6C6C6C6C6C6C6C6C6C6C6C6C6C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5

Fig. 9. On the left : A surface isometric to the surface of revolution shown
on the right. A geodesic alignable net C1, C3 runs symmetrically to curves
C5, C6 which map respectively to meridians and parallels under the isome-
try. Additionally, the angle that curves C1 and C3 make with curves C5 is
constant along curves C6.

Proof. Assume that {C1, C3} is a geodesic alignable net. We now

show that the net must lie on a surface isometric to a surface of

revolution. Let us consider the double frame of the net as described

in Section 2.5. For a geodesic net, we have 𝑔1 = 0 and 𝑔3 = 0.

Proposition 6 implies then d𝛼 (e1) = d𝛼 (e3). For Proposition 4, we

observe that the angle 𝛼 is constant along the bisecting direction

e3 − e1, and therefore that the 1-form d𝛼 points along the bisecting

direction e1 + e3.

Consider now a bisecting net {C5, C6}, with unit tangent vectors

e5 = (e1 + e3)/∥e1 + e3∥ and e6 = (e3 − e1)/∥e3 − e1∥. Then
consider the orthonormal basis {e5, e6}, and the dual-basis {𝜽 5, 𝜽 6}.
Let 𝛽 = 𝛼/2 be the angle that the vector e1 makes with the vector

e5. Note that the angle 𝛼 , as well as 𝛽 , are constant in direction e6.

Since 2d𝛽 = d𝛼 , we also have d𝛽 (e1) = d𝛽 (e3). We can now write:

e1 = e5 cos 𝛽 − e6 sin 𝛽, and e3 = e5 cos 𝛽 + e6 sin 𝛽. (3.8)

Let then 𝝎56 be the first connection form of Equations 2.12. From

Equations 2.21, we get:

𝑔1 = 𝑔5 cos 𝛽 − 𝑔6 sin 𝛽 − d𝛽 (e1) = 0,

𝑔3 = 𝑔5 cos 𝛽 + 𝑔6 sin 𝛽 + d𝛽 (e3) = 0.
(3.9)

Since d𝛽 (e1) = d𝛽 (e3), summing Equations 3.9 yields 𝑔5 cos 𝛽 = 0.

For non degenerate curve nets, this implies𝑔5 = 0. The first structure

Equation 2.13 implies then d𝜽 5 = 0. Now, Equations 3.9 tell us

d𝛽 (e1) = d𝛽 (e3) = −𝑔6 sin 𝛽 . Propositions 2 and 4 imply then

d𝛽 ∧ 𝜽 5 = 0, and therefore d𝛽 (e6) = 0. Together with Equations 3.8,

we observe that d𝛽 (e5) = sec 𝛽 d𝛽 (e1), and thus:

d𝛽 = −𝑔6 tan 𝛽 𝜽 5 . (3.10)

Since d𝜽 5 = 0, Proposition 3 tells us that 𝑔6 tan 𝛽 is constant in

direction e6. As 𝛽 is constant in direction e6, we conclude that 𝑔6 is

also constant in the direction e6. Summarizing, the curves C5
are

geodesics, and the orthogonal curves C6
have constant geodesic

curvature. According to Proposition 9 (in Appendix B), the surface

is therefore isometric to a surface of revolution.

To prove that all surfaces isometric to a surface of revolution admit

a geodesic alignable net, consider now a surface of revolution and

trace on it a geodesic curve C. Construct curves C1
, C3

by rotating

around the axis, respectively, the curve C and its reflection about

a meridian plane. By rotational symmetry, we have 𝑔1 = 0, 𝑔3 = 0,

and d𝛼 (e1) = d𝛼 (e3), which imply alignability for Proposition 6.

All these quantities are preserved by isometry. □

We can easily observe that the equivalent condition for Chebyshev

nets is much more restrictive. Indeed:

Corollary 1. A geodesic Chebyshev net exists only and on all
developable surfaces.

Proof. Plugging Equations 3.7 into Equations 3.9, we get 𝑔5 = 0

and 𝑔6 = 0. We have then 𝝎56 = 0 and therefore d𝝎56 = 0. Cartan’s

structural equation 2.15 implies 𝐾 = 0. □

3.4 Normal curvature-preserving alignable nets
We examine now alignable nets in which, at every point, the nor-

mal curvatures of curves C1
and C3

are equal, and where these

normal curvatures vary at the same rate along the two curves. In

this scenario, the net allows the extraction of a gridshell formed by

congruent planar lamellae, shaping the curve in which it collapses,

arranged orthogonally to the net surfaceS. Consequently, we define
a normal curvature-preserving alignable net as follows:

Definition 6. Let {C1, C3} be an alignable net on a surface S,
with normal curvatures 𝑛1 and 𝑛3. The net is normal curvature-
preserving if, at each point of S, 𝑛1 = 𝑛3 and d𝑛1 (e1) = d𝑛3 (e3).

Fig. 10. A constant normal curvature alignable gridshells. The structure
collapses onto a circular strip.

Also in this case, this additional condition imposes a constraint

on the shape of the surface S. Specifically:

Theorem 2. A normal curvature-preserving alignable net exists
only and on all surfaces that, at each point, satisfy the relation

𝑎𝐾 + 𝑏𝐻 + 𝑐 = 0, with 𝑏2 − 4𝑎𝑐 <= 0, (3.11)

where the coefficients 𝑎, 𝑏, and 𝑐 are constant along one family of
principal curvature lines, and where 𝐾 and 𝐻 are respectively the
Gaussian and the mean curvature of the net surface. At each point,
the normal curvature of the net is given by

𝑛 =
−𝑏
2𝑎
.
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(a) (b) (c)

𝜅II curvature line

𝐻

𝐾

𝐻

𝐾

𝐻

𝐾

C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1 C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3

Fig. 11. (a) A tensor product B-spline approximating a PHLW-surface. Top left : Surface points belonging to the same curvature line corresponding to 𝜅II are
visualized with the same color. Right : Each surface point is represented in a plane where coordinates are given by its mean curvature 𝐻 and its Gaussian
curvature 𝐾 . This representation is termed curvature diagram. The alignment of points of the same color along a straight line indicates a linear correlation
𝑎𝐾 + 𝑏𝐻 + 𝑐 = 0 along principal curvature lines. Bottom left : Curves C1, C3 with normal curvature −𝑏/2𝑎 form an alignable net which preserves normal
curvature during the alignment. (b) A similar representation of a tensor product B-spline approximating a PHLW-surface with constant normal curvature. In
the curvature diagram, point of the same color align along parallel lines. (c) A tensor product B-spline approximating a P𝐾-surface. In the curvature diagram,
points of the same color align along horizontal lines, indicating a constant Gaussian curvature. Bottom left : The asymptotic net C1, C3 of this surface is
alignable.

Proof. Consider the double frame of the net depicted in Sec-

tion 2.5. From the first Mainardi-Codazzi equation 2.16, written for

both frames {e1, e2} and {e3, e4}, we obtain respectively:

d𝑡1 (e1) − d𝑛1 (e2) = 𝑔1 (𝑛2 − 𝑛1) − 2𝑔2𝑡1,

d𝑡3 (e3) − d𝑛3 (e4) = 𝑔3 (𝑛4 − 𝑛3) − 2𝑔4𝑡3 .
(3.12)

Euler’s equations 2.9 reveal that the condition 𝑛1 = 𝑛2 of Def-

inition 6 is equivalent to the condition that the directions e1 and

e3 are symmetric to principal curvature directions. Moreover, we

observe that for such a principal symmetric net, we have 𝑛2 = 𝑛4

and 𝑡1 = −𝑡3. From Equations 2.21, we can write:

𝑔2 = 𝑔3 csc𝛼 − 𝑔1 cot𝛼 − d𝛼 (e3) csc𝛼,

𝑔4 = 𝑔3 cot𝛼 − 𝑔1 csc𝛼 − d𝛼 (e1) csc𝛼.
(3.13)

Let then 𝛽 = 𝛼/2 be the angle that directions e1 and e3 make with

the principal curvature direction relative to 𝜅I . From Equations 3.12,

expressing 𝑛2 and 𝑡1 as functions of the angle 𝛽 with Euler’s equa-

tions 2.9, substituting 𝑛2 = 𝑛4 and 𝑡1 = −𝑡3, and plugging Equa-

tions 3.13, we get:

d𝑡1 (e1) − d𝑛1 (e2) = (𝜅II − 𝜅I ) (𝑔3 − d𝛼 (e3)),
−d𝑡1 (e3) − d𝑛1 (e4) = (𝜅II − 𝜅I ) (𝑔1 + d𝛼 (e1)) .

(3.14)

A detailed derivation is provided in Appendix B.

For points where 𝜅I = 𝜅II (umbilical points), Euler’s equations 2.9

imply 𝑛1 = 𝑛3 for all net directions. In all-umbilical regions, which

are necessarily parts of planes or spheres (see [O’Neill 2006] p. 276),

we further have d𝑛1 = d𝑛3 = 0. From Definition 6, we observe that

all alignable nets are normal curvature-preserving.

For points where 𝜅I ≠ 𝜅II , according to Proposition 6, the net is

alignable if and only if 𝑔1 + d𝛼 (e1) = −𝑔3 + d𝛼 (e3) and therefore if

and only if

d𝑡1 (e1) − d𝑛1 (e2) = d𝑡1 (e3) + d𝑛1 (e4) . (3.15)

Consider now the condition d𝑛1 (e1) = d𝑛1 (e3) of Definition 4.

Since the vectors e1 − e3 and e2 + e4 are parallel, from Proposition 4

we deduce −d𝑛1 (e2) = d𝑛1 (e4). From Equation 3.15 we deduce

then d𝑡1 (e1) = d𝑡1 (e3). Therefore, for Proposition 4, we observe

that along the principal curvature direction e3 − e1 the normal

curvature 𝑛1 and the geodesic torsion 𝑡1 are both constant. From

Euler’s equations 2.9, employing the equations for the bisecting

angle of sine and cosine with 𝛼 = 2𝛽 , we can derive the following

relations, valid for all surfaces:

𝑛 = 𝐻 + 𝑟 cos𝛼, 𝑡 = 𝑟 sin𝛼, with 𝑟 =
√︁
𝐻2 − 𝐾.

Now, observing that (𝑛 − 𝐻 )2 + 𝑡2 = 𝑟2
, we get:

𝐾 − 2𝑛1𝐻 + 𝑛2

1
+ 𝑡2

1
= 0. (3.16)

Multiplying by 𝑎 the relation 3.16, and setting 𝑏 = −2𝑎𝑛1 and 𝑐 =

𝑎(𝑛2

1
+ 𝑡2

1
), yields the result. Moreover, we have 𝑏2 − 4𝑎𝑐 = −4𝑎2𝑡2

1
,

which is non-positive. □

We note that surfaces satisfying the conditions of Theorem 2

encompass linear Weingarten surfaces of hyperbolic type, which

are surfaceswhere the coefficients of Equation 3.11 are constant at all

points. Therefore, we propose the term principal linear Weingarten
surfaces of hyperbolic type, abbreviated as PHLW-surfaces, to denote

the broader class of surfaces defined by Theorem 2 (see Figure 11a).

If the normal curvature 𝑛 of the net remains constant across all

points on the surface, it becomes possible to extract an alignable

gridshell that collapses into a planar circular arc (see Figures 10

and 11b). In this case:

Corollary 2. An alignable gridshell with constant normal curva-
ture 𝑛 exists only and on all surfaces where the function 𝐾 − 2𝑛𝐻 +𝑛2

is constant and non-positive along one family of principal curvature
lines.
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(a) Isometric surface of revolution (b) Surface of revolution (c) Curves tracing (d) Back-mapping (e) Geodesic alignable gridshell
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Fig. 12. Design of geodesic alignable gridshells. (a) We employ a geodesic parallel mesh discretization to design a surface isometric to a surface of revolution
([Wang et al. 2019]). This mesh is achieved when, at every vertex, the two sums of edge angles across each polyline of one family (red) are equal. The mesh
becomes isometric to a surface of revolution if the polylines in the other family (yellow) have equal edge lengths along their paths. (b) We reconstruct an
isometric surface of revolution, (c) and trace the alignable net on this surface by rotating and reflecting a single geodesic curve. (d) This net is then mapped
back onto the initially designed surface. (e) The resulting curves can be used as the axes of a geodesic alignable gridshell.

Proof. We have d𝑛 = 0. The proof follows directly from Theo-

rem 2. □

A special case of alignable gridshells with preserving normal

curvature are asympthotic alignable gridshells. In this case, beams

can be realized with straight lamellae arranged orthogonally to the

surface. In this scenario, the shape of the surface is constrained as

follows:

Corollary 3. An asymptotic alignable gridshell exists only and on
all surfaces where the Gaussian curvature is constant and non-positive
along one family of principal curvature lines.

Proof. Given 𝑛 = 0, the proof follows immediately from Theo-

rem 2. □

In this case, we note that surfaces possessing the property outlined

in Corollary 3 encompass surfaces with constant negative Gaussian

curvature, also called𝐾-surfaces. This expanded category is denoted

as P𝐾-surfaces, with the letter P signifying principal (see Figure 11c).

Equivalent conditions for normal curvature-preserving Cheby-

shev nets, previously outlined in [Liu et al. 2023], are provided in

Appendix C.

4 COMPUTATIONAL DESIGN OF ALIGNABLE LAMELLA
GRIDSHELLS

We now leverage our finding and propose two computational meth-

ods for the design of geodesic and normal curvature-preserving

alignable nets. Both pipelines start with a first surface design step,

followed by a curves tracing procedure. A lamella gridshell is then

constructed using these curves as central axes of beams.

4.1 Design of geodesic alignable gridshells
This section outlines a computational pipeline for designing geo-

desic alignable nets. Following Theorem 1, the pipeline starts with

the design of a surface which is isometric to a surface of revolution.

Subsequently, the corresponding surface of revolution is recon-

structed, and geodesic curves are traced on this surface. Finally,

these curves are mapped back onto the isometric surface initially

designed to get a geodesic alignable gridshell.

4.1.1 Surface design. To design a surface isometric to a surface

of revolution, we employ the method introduced by Wang et al.

[2019]. This approach relies on a regular quadrilateral mesh where

the two families of edge polylines discretize a geodesic parallel

parametrization of a surface— that is, an orthogonal parametrization

where one family of parameter curves are geodesics. This property

is ensured by enforcing, at each vertex, the constraint that sums

of edge angles opposite to one family of polylines are equal (see

Figure 12a). Isometry with a surface of revolution is achieved if each

polyline within the other family possesses uniform edge lengths

along its path. Within this discrete model, on such a mesh the two

families of edge polylines will map respectively to meridians and

parallels of a surface of revolution under an isometric deformation.

This constrained mesh can approximate a given target surface, or be

used for interactive modeling. For further details about this method

and its implementation, we refer to [Wang et al. 2019].

4.1.2 Curves tracing. From the rotational isometric mesh, it is pos-

sible to derive the corresponding discrete surface of revolution using

straightforward geometric considerations, as detailed in [Wang et al.

2019]. Once this surface is obtained, we proceed to lay out the

alignable net upon it. According to Theorem 1, this net exhibits

symmetry along meridians, and constant angle along parallel circles.

Therefore, the net is uniquely defined by tracing a single geodesic

curve from either C1
or C3

. To trace this curve, it is possible to

leverage Clairaut’s relation, which states that any geodesic on a

surface of revolution fulfills, at each point, 𝑟 cos 𝜉 = 𝑐, where 𝑟 is

the distance of the geodesic to the axis of revolution, 𝜉 measures the

angle between the geodesic and the parallel circle passing through

that point, and 𝑐 is a constant. The curve can be constructed through

a forward integration procedure, starting from a boundary parallel

circle. All different geodesic curves can be obtained by varying the

constant 𝑐 . To achieve a smoother net, it is possible to interpolate

the discrete rotational mesh with a NURBS surface.

The first family of curves can be obtained by rotating the traced

curve around the axis of revolution. By first reflecting the traced

curve about a meridian plane, we can obtain the second family of

curves with the same procedure. To design a gridshell, the spacing
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(a) PHLW-surface (b) Curves tracing (c) Mesh discretization (d) Post-optimization
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(e) Alignment simulation

Δ𝑎 Δℓ Δ𝑛

𝐾

𝐻

𝑣 coordinate

min max

Δ [%]

0 > 1 C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1 C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3

Fig. 13. Design of normal curvature-preserving alignable gridshells. (a) A PHLW-surface designed using our method (see Section 4.2.1), alongside its curvature
diagram in the 𝐻 -𝐾 plane. The 𝑢 and 𝑣 iso-parameter lines coincide with principal curvature lines. Points sharing the same 𝑢 coordinate are depicted in the
same color. (b) We trace the alignable net, which runs symmetrically to principal curvature directions (see Section 4.2.2). (c) To assess the alignability of the
net, we employ a quad mesh discretization. The alignability error Δ𝑎 is calculated for each face as the difference between the sums of opposing pairs of edge
lengths, divided by the mean edge length. (d) We optimize the mesh to reduce alignability errors (see Section 4.2.4). (e) To simulate alignment, the mesh is
collapsed onto a plane. Alignment is now achieved with minimal variations in edge lengths Δℓ and discrete normal curvatures Δ𝑛.

between every curve can be varied as desired (see Figure 18). How-

ever, for architectural applications, it is often desirable to maintain

uniform spacing in both families. This can be achieved by rotating

the curve at equal intervals. Finally, the resulting net is mapped

back onto the isometric surface to obtain the final gridshell. This

procedure is summarized in Figure 12.

4.2 Design of normal curvature-preserving alignable
gridshells

This section outlines a computational pipeline for designing normal

curvature-preserving alignable nets. Leveraging Theorem 2, the

pipeline starts with the design of a PHLW-surface. Subsequently,

the alignable net is traced on this surface, and the collapsing curve

of the net is reconstructed. Finally, we introduce a post-optimization

procedure to mitigate potential errors, based on a mesh discretiza-

tion of the curve net, and a deployment simulation that exploits

geometric constraints within this mesh.

4.2.1 Surface design. To design a PHLW-surface, we optimize an

input B-spline surface towards a PHLW curvature relation. For that,

we build upon a method proposed in [Pellis et al. 2021] for the design

of Weingarten surfaces.

As in [Pellis et al. 2021], the surface S is represented as a tensor

product B-spline

𝑆 (𝑢, 𝑣) =
∑︁
𝑖

∑︁
𝑗

𝑁
𝑑𝑢
𝑖

(𝑢)𝑁𝑑𝑣
𝑗
(𝑣)𝐶𝑖 𝑗 , (4.1)

where𝐶𝑖 𝑗 are the control points, forming a quadrilateral mesh, while

𝑁𝑑
𝑖
denotes the B-spline basis functions of degree 𝑑 . The degrees in

the 𝑢 and 𝑣 directions are denoted as 𝑑𝑢 and 𝑑𝑣 respectively.

In this method, all constraints and target functions must be ex-

pressed as quadratic functions of variables. The primary variables of

this problem are the positions of the control points 𝐶𝑖 𝑗 . The target

function is evaluated at sample points ¤𝑆 = 𝑆 ( ¤𝑢, ¤𝑣). The samplings

¤𝑢 and ¤𝑣 are determined through homogeneous subdivision of the

𝑢 and 𝑣 domains. Users have the flexibility to specify the bi-degree

(𝑑𝑢 , 𝑑𝑣) of the B-spline surface, and they can control the density of

the samples.

To express the PHLW condition of equation 3.11 as a quadratic

constraint, the following auxiliary variables and corresponding con-

straints are introduced at each sample point ¤𝑆 : The non-unitized
surface normal u, with constraint

u = 𝑆,𝑢 × 𝑆,𝑣 . (4.2)

The coefficients of the first fundamental form 𝐸, 𝐹 and 𝐺 , with

constraints

𝐸 = ⟨𝑆,𝑢 , 𝑆,𝑢⟩, 𝐹 = ⟨𝑆,𝑢 , 𝑆,𝑣⟩, 𝐺 = ⟨𝑆,𝑣, 𝑆,𝑣⟩, (4.3)

where angle brackets indicate the dot product between two vectors.

The determinant of the first fundamental form 𝛿 , with constraint

𝛿 = 𝐸𝐺 − 𝐹 2 . (4.4)

The coefficients of the second fundamental form 𝐿,𝑀 and 𝑁 , with

constraints

𝐿 =
⟨𝑆,𝑢𝑢 , u⟩√

𝛿
, 𝑀 =

⟨𝑆,𝑢𝑣, u⟩√
𝛿

, 𝑁 =
⟨𝑆,𝑣𝑣, u⟩√

𝛿
. (4.5)

The Gaussian curvature 𝐾 and the mean curvature 𝐻 , defined by

constraints

𝐾 =
𝐿𝑁 −𝑀2

𝛿
, 𝐻 =

𝐿𝐺 − 2𝑀𝐹 − 𝑁𝐸
2𝛿

. (4.6)

Here, the surface derivatives 𝑆,𝑢 , 𝑆,𝑣 , 𝑆,𝑢𝑢 , 𝑆,𝑢𝑣 , and 𝑆,𝑣𝑣 can be

derived analytically from the B-spline equation 4.1, and exhibit a

linear dependency on the control points 𝐶𝑖 𝑗 (see [Prautzsch et al.

2002]). More details on this implementation can be found in [Pellis

et al. 2021].

To enforce the linear relation of Equation 3.11 along principal

curvature lines, we employ a principal curvature parametrization

for the 𝑢 and 𝑣 coordinates of the B-spline surface. This is achieved

by introducing constraints

𝐹 = 0, 𝑀 = 0, (4.7)
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at each sample point 𝑆 ( ¤𝑢, ¤𝑣). Then, we define the target function of

Equation 3.11 as

𝐾 − 2𝑛 ¤𝑢𝐻 + 𝑛2

¤𝑢 + 𝑡2¤𝑢 = 0, (4.8)

where 𝑛 ¤𝑢 and 𝑡 ¤𝑢 are two additional variables defined for each sam-

pled coordinate ¤𝑢. To create alignable nets with constant normal

curvature, we set 𝑛 ¤𝑢 as a unique variable for all points. For asymp-

totic alignable nets, we impose 𝑛 ¤𝑢 = 0. Denoting the residual of 𝑖-th

constraint of Equations 4.2 to 4.7 as 𝜒𝑖 , and the residual of the target

function 4.8 as 𝜒𝑡 , we define a PHLW energy as:

𝐸
PHLW

=
∑︁
¤𝑆

(∑︁
𝑖

𝜒2

𝑖 + 𝜔𝑡 𝜒
2

𝑡

)
,

where 𝜔𝑡 denotes a weight, which we set to 10
−1
.

To prevent the formation of a degenerate net — where the angle 𝛽

that directions e1 and e3 make with a principal curvature direction

is 0 or ±𝜋/2 — from Euler’s equations 2.9 we observe that, at a

sample point ¤𝑆 , the angle 𝛽 equals 𝜋/4 when 𝑛 ¤𝑢 = 𝐻 . We introduce

then a fairness energy 𝐸𝛽 defined as:

𝐸𝛽 = 𝜔𝛽

∑︁
¤𝑆
(𝑛 ¤𝑢 − 𝐻 )2,

where 𝜔𝛽 was set to 5 · 10
−4
.

To approximate a given reference surface 𝑆𝑟 , we introduce a

closeness energy 𝐸𝑐 and a gliding energy 𝐸𝑔 defined as follows:

𝐸𝑐 = 𝜔𝑐

∑︁
¤𝑆
∥ ¤𝑆 − 𝑆𝑟𝑐 ∥2, 𝐸𝑔 = 𝜔𝑔

∑︁
¤𝑆
⟨ ¤𝑆 − 𝑆𝑟𝑐 , u𝑟𝑐 ⟩2,

where 𝑆𝑟𝑐 is the closest point to
¤𝑆 on the reference surface 𝑆𝑟 , and

u𝑟𝑐 denotes the normal vector of 𝑆𝑟 at 𝑃𝑟𝑐 .

We solve then the optimization problem

𝐸
PHLW

+ 𝐸𝛽 + 𝐸𝑐 + 𝐸𝑔 → min.

This optimization is carried out using a Levenberg-Marquardt al-

gorithm, implemented with the method proposed in [Tang et al.

2014]. During optimization, the variables 𝑛 ¤𝑢 and 𝑡 ¤𝑢 are initialized

via linear fitting of the target function in Equation 4.8 to sample

points with the same ¤𝑢 coordinate. In all the examples presented,

we used B-spline surfaces of bi-degree 4, with a grid of 9x9 control

points, and a grid of 18x18 sample points.

4.2.2 Curves tracing. Once a B-spline surface 𝑆 has been optimized

towards a PHLW-surface, we can compute the unit tangent vectors

of a principal curvature net {C5, C6} at each sample point 𝑆 ( ¤𝑢, ¤𝑣)
as follows:

e5 =
𝑆,𝑢

∥𝑆,𝑢 ∥
, e6 =

𝑆,𝑣

∥𝑆,𝑣 ∥
.

The corresponding dual-basis is given by:

𝜽5 = ∥𝑆,𝑢 ∥ d𝑢, 𝜽6 = ∥𝑆,𝑣 ∥ d𝑣 . (4.9)

Next, we aim to compute the directions of the normal curvature-

preserving alignable net, e1 and e3, forming an angle ±𝛽 with the

principal curvature direction e5. At each sample point 𝑆 ( ¤𝑢, ¤𝑣), Eu-
ler’s equations 2.9 yield:

𝜅I cos
2 𝛽 + 𝜅II sin

2 𝛽 = 𝑛 ¤𝑢 ,

and consequently,

sin
2 𝛽 =

𝑛 ¤𝑢 − 𝜅I
𝜅II − 𝜅I

. (4.10)

The density of sampling ( ¤𝑢, ¤𝑣) can be chosen independently of the

one used in the preceding surface optimization (see Figure 14). For

sample points sharing the same ¤𝑢 coordinate, the normal curvature

𝑛 ¤𝑢 can be determined through linear fitting using Equation 4.8.

Subsequently, at each sample point, the net directions are computed

as follows:

e1 = cos 𝛽 e5 − sin 𝛽 e6, e3 = cos 𝛽 e5 + sin 𝛽 e6 . (4.11)

To trace a family of smooth curves on the surface 𝑆 (𝑢, 𝑣), we ex-
ploit level-sets of a smooth surface function 𝜉 (𝑢, 𝑣). The differential
of the function 𝜉 is given by:

d𝜉 = 𝜉,𝑢d𝑢 + 𝜉,𝑣d𝑣 .
The level-sets of 𝜉 align with the direction e1 when d𝜉 (e1) = 0.

Substituting d𝑢 and d𝑣 with Equations 4.9, and plugging e1 from

Equations 4.11, we get:

d𝜉 (e1) = 𝜉,𝑢
cos 𝛽

∥𝑆,𝑢 ∥
− 𝜉,𝑣

sin 𝛽

∥𝑆,𝑣 ∥
= 0. (4.12)

Consider now the direction e2 = sin 𝛽 e5 + cos 𝛽 e6, which is orthog-

onal to e1. The density of level-sets of 𝜉 at each surface point is

given by:

d𝜉 (e2) = 𝜉,𝑢
sin 𝛽

∥𝑆,𝑢 ∥
+ 𝜉,𝑣

cos 𝛽

∥𝑆,𝑣 ∥
. (4.13)

The same applies for direction e3 and its orthogonal direction e4.

To compute the function 𝜉 , we employ a B-spline surface 𝐹 (𝑢, 𝑣),
defined on the same 𝑢, 𝑣 parameter space of the B-spline surface 𝑆 ,

such that 𝐹 (𝑢, 𝑣) = (𝑢, 𝑣, 𝜉)𝑇 . The variables are then the 𝜉-coordinates
of the control points of 𝐹 . The number of control points in 𝑢 and

𝑣 directions can be set by the user. Alignment with the specified

𝑣 coordinate

min max

𝐻𝐻

𝐾 𝐾

𝐶𝑖𝑆 ( ¤𝑢𝑖 , ¤𝑣 𝑗 )𝑆 ( ¤𝑢𝑖 , ¤𝑣 𝑗 )

Fig. 14. On the left, sampling points employed for the optimization of the
B-spline surface towards a PHLW relation, as described in Section 4.2.1. In
the center, the PHLW relation persists even increasing the sampling density,
indicating a smooth solution. On the right : Collapse polyline composed of
points𝐶𝑖 . To reconstruct the collapse curve, we maintain a uniform sample
density of 1200x1200 across all presented results.
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direction is enforced at sample points ¤𝐹 = 𝐹 ( ¤𝑢, ¤𝑣). In particular, we

define an alignment energy 𝐸𝑎 and a fairness energy 𝐸𝑓 as follows:

𝐸𝑎 =
∑︁
¤𝐹
d𝜉 (e1)2, 𝐸𝑓 = 𝜔 𝑓

∑︁
¤𝐹
(d𝜉 (e2) − 1)2,

where we use Equations 4.12 and 4.13 evaluated at each sample point

¤𝐹 , and set a fixed weight𝜔 𝑓 to 10
−1

. Note that the partial derivatives

𝜉,𝑢 and 𝜉,𝑣 depend linearly on the control points. Then, we solve the

energy minimization with a Levenberg-Marquardt method (refer to

[Tang et al. 2014]). In the presented examples, we used B-splines 𝐹

of bi-degree 3, with 12x12 control points, and 48x48 sample points.

Curves C1
and C3

are then traced by connecting points with equal

𝜉 values. These values are obtained through a uniform subdivision

of the 𝜉 domain, with the subdivision density adjustable by the user.

4.2.3 Collapse curve reconstruction. We aim now to reconstruct the

collapse curve of the net. We begin by densely sampling the PHLW-

surface 𝑆 (𝑢, 𝑣) with ( ¤𝑢, ¤𝑣) pairs. Then, we leverage the property that
for each fixed parameter value ¤𝑢𝑖 all corresponding surface points
𝑆 ( ¤𝑢𝑖 ) are expected to collapse onto a single point, denoted as 𝐶𝑖 ,

on the collapse curve (see Figure 14). Next, we construct a collapse

polyline connecting points𝐶𝑖 , and discretize the arc-length between

a point𝐶𝑖 and its consecutive point𝐶𝑖+1 as chord-length ∥𝐶𝑖−𝐶𝑖+1∥,
computed as follows:

∥𝐶𝑖 −𝐶𝑖+1∥ =
1

𝑚

𝑚∑︁
𝑗=1

∥𝑆 ( ¤𝑢𝑖 , ¤𝑣 𝑗 ) − 𝑆 ( ¤𝑢𝑖+1, ¤𝑣 𝑗 )∥
cos 𝛽 ( ¤𝑢𝑖 , ¤𝑣 𝑗 )

, (4.14)

where𝑚 is the number of ¤𝑣 samples and 𝛽 ( ¤𝑢𝑖 , ¤𝑣 𝑗 ) is the angle that
the net makes with the first principal curvature direction at sample

point 𝑆 ( ¤𝑢𝑖 , ¤𝑣 𝑗 ), given by Equation 4.10. Here, for each sample ¤𝑢𝑖 , we
computed an average between sample points 𝑆 ( ¤𝑢𝑖 , ¤𝑣 𝑗 ) to account

for potential discrepancies arising from discretization and PHLW-

surface optimization.

Now, we observe that the normal curvature of the net at surface

points 𝑆 ( ¤𝑢𝑖 ) is constant. We acquire this curvature, denoted as 𝑛𝑖 ,

through linear fitting at sample points 𝑆 ( ¤𝑢𝑖 , ¤𝑣 𝑗 ) using Equation 4.8.

The normal curvature 𝑛𝑖 shall equal the curvature of the collapse

curve at the point 𝐶𝑖 , which we discretize as the inverse radius of

the circle passing through points𝐶𝑖 ,𝐶𝑖−1, and𝐶𝑖+1. Points𝐶𝑖 , along

with the flattened surface normal n̄𝑖 , are then derived through a for-

ward integration at sample coordinates ¤𝑢𝑖 , as detailed in Figure 15.

𝑠 = sign(𝑛𝑖 )

𝜗𝑖 = arcsin

(
|𝑛𝑖 |

ℓ𝑖−1

2

)
𝜆𝑖 = arcsin

©­« |𝑛𝑖 |
√︄(

1

𝑛𝑖

)
2

−
(
ℓ𝑖

2

)
2ª®¬

𝛾𝑖 = 𝛾𝑖−1 − 𝑠 (𝜆𝑖 − 𝜗𝑖 − 𝜋/2)
n̄𝑖 = (sin(𝛾𝑖−1 − 𝑠𝜗𝑖 ), − cos(𝑠𝜗𝑖 − 𝛾𝑖−1 ) )
𝐶𝑖+1 = 𝐶𝑖 + ℓ𝑖 (cos𝛾𝑖 , sin𝛾𝑖 )

n̄𝑖

𝐶𝑖

𝐶𝑖+1

𝐶𝑖−1

ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1ℓ𝑖−1

ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖ℓ𝑖

𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1𝛾𝑖−1

2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖2𝜗𝑖
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|𝑛𝑖 |−1

𝑥

𝑦

Fig. 15. Reconstruction of the collapse curve at 𝑖-th iteration. On the right :
Configuration of aligned points𝐶𝑖 , along with the parameters involved in
forward integration. The lengths ℓ𝑖 are computed with Equation 4.14.

4.2.4 Post-optimization and alignment simulation. To achieve the
precision required for real-world manufacturing, we refine the curve

net through a post-optimization process. For that, we employ a

mesh discretization wherein adjacent curve joints are connected

by straight edges. We denote the vertices of this mesh as 𝑉𝑗 . We

compute then the position of these vertices after alignment, denoted

as𝑉𝑗 . To do that, we extract the𝑢 coordinate of𝑉𝑗 on the surface, and

map it onto the aligned polyline𝐶𝑖 through barycentric coordinates.

Then, we simultaneously optimize the positions of vertices 𝑉𝑗 and

the aligned configuration 𝑉𝑗 by modeling a deployment process of

the mesh. In this process, edge lengths are preserved, and edges

rotate at each vertex around a common axis.

In this optimization, the variables consist of the positions of ver-

tices𝑉𝑗 ∈ R3
, their corresponding rotation axes r𝑗 ∈ R3

, the aligned

positions 𝑉𝑗 ∈ R2
, and the aligned rotation axes r̄𝑗 ∈ R2

. For each

edge 𝑗𝑘 connecting vertices𝑉𝑗 and𝑉𝑘 , we ensure edge length preser-

vation with the constraint

𝜒ℓ = ∥𝑉𝑘 −𝑉𝑗 ∥2 − ∥𝑉𝑘 −𝑉𝑗 ∥2 .

At each vertex 𝑉𝑗 , we let edges 𝑗𝑘 to rotate around a common axis

r𝑗 by adding constraints

𝜒𝑟 = ⟨𝑉𝑘 −𝑉𝑗 , r𝑗 ⟩ − ⟨𝑉𝑘 −𝑉𝑗 , r̄𝑗 ⟩,
along with normalization constraints

𝜒𝑢 = ∥r𝑗 ∥2 − 1, 𝜒𝑢 = ∥r̄𝑗 ∥2 − 1.

Subsequently, the alignability energy 𝐸𝑎 is formulated as:

𝐸𝑎 = 𝜔ℓ

∑︁
𝑗𝑘

𝜒2

ℓ + 𝜔𝑟
∑︁
𝑗

∑︁
𝑘

𝜒2

𝑟 + 𝜔𝑢
∑︁
𝑗

(𝜒2

𝑢 + 𝜒2

𝑢 ) .

To maintain proximity to the initial configuration of the mesh, we

introduce point closeness and gliding energy terms

𝐸𝑐 = 𝜔𝑐

∑︁
𝑗

∥𝑉𝑗 −𝑉 0

𝑗 ∥
2, 𝐸𝑔 = 𝜔𝑔

∑︁
𝑗

⟨𝑉𝑗 − 𝑆𝑐 , n𝑐 ⟩2,

where𝑉 0

𝑗
represents the initial position of vertex𝑉𝑗 , while 𝑆𝑐 and n𝑐

respectively denote its closest point on the B-spline surface and the

corresponding normal. Furthermore, we let the points 𝑉𝑗 to glide

on the collapsing curve 𝐶𝑖 by introducing the energies

𝐸𝑐 = 𝜔𝑐

∑︁
𝑗

∥𝑉𝑗 −𝐶𝑐 ∥2, 𝐸𝑔 = 𝜔𝑔

∑︁
𝑗

⟨𝑉𝑗 −𝐶𝑐 , n̄𝑐 ⟩2,

where 𝐶𝑐 and n̄𝑐 respectively denote the closest point 𝐶𝑖 to 𝑉𝑗 ,

and the corresponding aligned normal n̄𝑖 . To ensure consistency

between rotation axes on the surface and the collapsing curve, we

introduce the energies

𝐸𝑠 = 𝜔𝑠

∑︁
𝑗

(
⟨r𝑗 , n𝑐 ⟩ − 1

)
2

, 𝐸𝑠 = 𝜔𝑠

∑︁
𝑗

(
⟨r̄𝑗 , n̄𝑐 ⟩ − 1

)
2

.

Finally, to maintain mesh fairness, we introduce a graph Laplacian

energy for vertices𝑉𝑗 , with a weight 𝜔 𝑓 . We solve the minimization

problem with a Levemberg-Marquardt algorithm (see [Tang et al.

2014]). Weights used for the presented examples are reported in

Table 2.

For simulating the full deployment sequence of the net, we use a

similar approach. The reference configuration is now the optimized

mesh with vertices 𝑉 ∗
𝑗
and corresponding rotation axes r∗

𝑗
, which
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Δ𝑛 [%]

0 1

Δℓ [%]

0 1
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0 1

Δℓ [%]

0 1

Fig. 16. Alignment sequence of normal curvature-preserving alignable gridshells. The gridshells are extracted from the PHLW-surfaces shown in Figure 11a
and 11c, following a post-optimization. On the right, the variations in edge length Δℓ and normal curvature Δ𝑛 after complete alignment are shown.

are substituted for 𝑉𝑗 and r̄𝑗 in the alignment energy 𝐸𝑎 . The vari-

ables are the deployed vertices 𝑉𝑗 and rotation axes r𝑗 . To collapse

the mesh into a curve, we determine a collapse direction d by aver-

aging the vectors between the first and last sample points of each

¤𝑢 parameter line of the PHLW-surface. Then, we define energies

to align vertices and vertex normals onto the plane with normal

vector d and passing through the mesh centroid. Intermediate states

can be achieved through affine combinations between weights of

collapsing energies with the one of a proximity energy to 𝑉 ∗
𝑗
. In

this case, we introduce a Laplacian fairness both for vertices 𝑉𝑗 and

rotation axes r𝑗 .

Table 2. Weights used for post-optimization of the presented results, as
described in Section 4.2.4.

𝜔ℓ 𝜔𝑟 𝜔𝑢 𝜔𝑐 𝜔𝑔 𝜔𝑐 𝜔𝑔 𝜔𝑠 𝜔𝑠 𝜔 𝑓

1 10
2

10
2 [10

−5, 10
−4 ] 10

−5
10

−1
10

−1
10

−2
10

−1 [10
−5, 10

−4 ]

5 RESULTS AND DISCUSSION
In this section, we present and discuss the results obtained from

the computational pipelines detailed in Section 4. All algorithms

have been implemented using Python, alongside the numerical li-

braries NumPy and SciPy. The outcomes are shown in Figures 1, 4, 10

to 14, and 16 to 21. For implementation specifics and validation tests

concerning the surface optimizations discussed in Sections 4.1.1

and 4.2.1, we refer to [Wang et al. 2019] and [Pellis et al. 2021],

respectively. Further details about the Levemberg-Marquardt al-

gorithm used in our implementation can be found in [Tang et al.

2014].

5.1 Verification of results
We assess the alignability of a curve net using a mesh discretization.

On each face of this mesh, consider pairs of edge lengths (ℓ1, ℓ3) and
(ℓ2, ℓ4) that will overlap upon alignment. An alignability error Δ𝑎 is
then calculated for each face as follows:

Δ𝑎 = 4

���� ℓ1 + ℓ2 − ℓ3 − ℓ4ℓ1 + ℓ2 + ℓ3 + ℓ4

���� .
Our experiments consistently demonstrate low alignability errors

Δ𝑎, with an average typically falling below 1%, and with a maximum

remaining under 3% (as detailed in Figures 13 and 18). Furthermore,

Figure 19 showcases that Δ𝑎 exhibits a low dependence on mesh

coarseness, decreasing consistently with mesh refinement.

For normal curvature-preserving networks, the post-optimization

process outlined in Section 4.2.4 achieves a significant reduction in

the error Δ𝑎 by an order of magnitude, as visualized in Figure 13.

Additionally, Figure 17 depicts the minimal deviation of the post-

optimized mesh from the PHLW-surface, confirming the effective-

ness of the inverse design pipeline.

To further assess the alignability of normal curvature-preserving

nets, we performed simulations involving an alignment sequence

where themesh is collapsed onto a plane (as detailed in Section 4.2.4).

We measure the relative differences in edge lengths Δℓ and discrete

normal curvature Δ𝑛 between the optimized mesh and the aligned

configuration using the following equations:

Δℓ =

����� |𝑉𝑎𝑘 −𝑉𝑎
𝑗
| − |𝑉 ∗

𝑘
−𝑉 ∗

𝑗
|

|𝑉 ∗
𝑘
−𝑉 ∗

𝑗
|

����� ,
Δ𝑛 =

1

𝑚

𝑚∑︁
𝑘=1

����� ⟨𝑉𝑎𝑗 −𝑉𝑎
𝑘
, r𝑎
𝑗
⟩ − ⟨𝑉 ∗

𝑗
−𝑉 ∗

𝑘
, r∗
𝑗
⟩

⟨𝑉 ∗
𝑗
−𝑉 ∗

𝑘
, r∗
𝑗
⟩

����� ,
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where 𝑎 and ∗ denote quantities in the aligned and post-optimized

mesh, respectively, and 𝑘 represents vertices connected to vertex 𝑗 .

Values found in our tests are shown in Figures 13 and 16. Notably,

our experiments consistently yielded errors below 1%.

The pipeline for designing normal curvature-preserving alignable

gridshells has been further validated through the construction of

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 [%]

0 0.5

Fig. 17. Distance of mesh vertices from the original PHLW-surface, after
post-optimization. Deviation is quantified as percentage of the bounding
box diagonal of the PHLW-surface. We observe that post-optimization
introduces minor deviations.

Δ𝑎 [%]

0 2

Fig. 18. Comparison of alignability errors Δ𝑎 between a geodesic net on a
surface of revolution and its isometric deformation. Minor error variations
are induced by the isometric mapping of the net. Top: A net with uniform
spacing. Bottom: Demonstrating alignability even with varying spacing
between curves.

Δ𝑎 [%]

0 3

Fig. 19. Alignability error Δ𝑎 of a normal curvature-preserving net across
various mesh densities. We observe that the error remains consistent even
for coarse discretizations.

physical prototypes (refer to Figure 21). In this instance, post-optimi-

zation was executed on a denser mesh, with 16 faces per model face.

5.2 Limitations
A fundamental constraint of the presented approach lies in the

geometric simplification applied to the gridshell. Specifically, we

assume that the beams exhibit no bending resistance along the

wider cross-sectional direction, nor any torsional resistance. These

assumptions are quite realistic when the cross-sections of the beams

are inscribed in rectangles with an edge ratio of approximately

10:1 or higher. However, for beams with lower edge ratios, these

neglected resistances can cause significant deviations in the final

shape. To address this issue, one approach is to employ a simulation-

based method as [Panetta et al. 2019] to refine the result. In this

scenario, the presented pipelines serve as valuable initialization

steps, enabling inverse design processes. Simulation-based methods

can also be used to optimize themechanical behavior of the structure

by minimizing the elastic energy stored in the beams.

On the computational front, a notable limitation of the pipeline

for normal curvature-preserving gridshells is encountered during

the PHLW-surface optimization. Here, we are restricted to modeling

surfaces with curvature lines forming a regular patch, devoid of

singularities. In many cases, this entails a significant shape change

of the input B-spline surface, making this method more suitable for

interactive design rather than shape approximation (see Figure 20).

Exploring methods capable of handling more complex shapes is left

for future investigation.

(a) (b) (a) (b)

𝑢-lines 𝑣-lines

Fig. 20. Shape approximation with PHLW-surfaces. (a) Input B-spline.
(b) Optimized B-spline, as detailed in Section 4.2.1. Principal curvature
directions are indicated in red, where defined. On the right, an example
of approximation failure is shown. The significant shape change is mainly
due to the alignment of the 𝑢 and 𝑣 parameter curves with the principal
curvature directions.

6 FINAL REMARKS
In this work, we addressed the design of deployable lamella grid-

shells by studying the geometric properties of alignable nets. First, it

was shown that geodesic alignable nets exist only on surfaces isomet-

ric to a surface of revolution. This conclusion, originally highlighted

by Tellier [2022a], follows intuitively from the rotational symmetry

inherent in surfaces of revolution, coupled with the preservation of

lengths and geodesic curvature during isometric transformations.

However, this study revealed that such surfaces represent the sole

configuration attainable for geodesic alignable nets. Furthermore,

it was established that normal curvature-preserving alignable nets

exist only on a special class of surfaces, named PHLW-surfaces, char-

acterized by a consistent linear relation between curvatures along
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(a) (b) (c) (d)

(b) (c) (d) (b) (c) (d)

Fig. 21. Physical prototypes of normal curvature-preserving alignable gridshells, designed with the pipeline of Section 4.2. The lamellae, 20 mm wide each, are
made by cutting 1 mm thick polypropylene sheets. (a) Deployment sequence. (b) Aligned configuration. (c) Deployed configuration. Bottom right, in yellow :
The PHLW surface, offset by 20 mm, has been 3D printed and the joint locations have been marked. By placing the joints exactly in the expected locations, we
observe a good shape match. (d) Digital model after post-optimization.

a family of principal curvature lines. In this case, unlike the equiv-

alent Chebyshev nets which are limited to shaping rotational and

cylindrical surfaces, the findings unveil a broader class of structures

capable of collapsing into generic planar curves. Lastly, the author

believes that these findings open avenues for exploring surfaces

where even more complex curvature relationships, beyond simple

linear ones, consistently hold along principal lines of curvature.
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APPENDIX

A FORMS ON SURFACES
This section provides a brief introduction to forms on surfaces.

Comprehensive treatments of this topic can be found in [O’Neill

2006] and [Needham 2021].

A.1 Tangent vectors and 1-forms
Let S be a smooth surface in three-dimensional Euclidean space.

At a point 𝑃 of the surface, the tangent plane 𝑇S𝑃
is defined as the

space of all vectors v tangent to the surface S at 𝑃 . Suppose we

have selected two tangent vectors b1 and b2 ∈ 𝑇S𝑃
. If these vectors

do not lie along the same line, every tangent vector v ∈ 𝑇S𝑃
can be

written as a linear combination of them as

v = 𝑣1b1 + 𝑣2b2,

where the scalars 𝑣1
and 𝑣2

are the components of v. The set {b1, b2}
then forms a basis for the tangent vector space 𝑇S𝑃

.

Now, consider a real-valued function that takes a single tangent

vector v ∈ 𝑇S𝑃
as input and is linear in its input v. Such an object is

called a 1-form. More explicitly, if v and w are two tangent vectors

of𝑇S𝑃
, and 𝑓 , 𝑔 are two scalars, a 1-form is defined by the following

property:

𝝎 (𝑓 v + 𝑔w) = 𝑓 𝝎 (v) + 𝑔𝝎 (w).

Given two 1-forms 𝝎 and 𝝂 , we can define their sum and multi-

plication with scalars as

(𝝎 + 𝝂) (v) = 𝝎 (v) + 𝝂 (v) and (𝑓 𝝎) (v) = 𝑓 𝝎 (v),
under which the space of 1-forms constitutes a vector space. This

vector space is said to be a dual space of the tangent vector space𝑇S𝑃

in which it acts, and it is denoted as𝑇 ∗
S𝑃

. To understand this duality,

consider a vector v as a function that acts on 1-forms 𝝎, defined by

v(𝝎) ≡ 𝝎 (v). With this definition, the actions of vectors on 1-forms

and vice versa are symmetric, indicating that these spaces are dual

to each other.

If we select a basis {b1, b2} of 𝑇S𝑃
, we can define a dual-basis

{𝜼1,𝜼2} for the vector space 𝑇 ∗
S𝑃

such that

𝜼𝑖 (b𝑗 ) = 𝛿𝑖𝑗 , (A.1)

with 𝑖, 𝑗 ∈ {1, 2}, and where 𝛿𝑖
𝑗
is the Kronecker delta. A 1-form 𝝎

of 𝑇 ∗
S𝑃

can now be written as

𝝎 = 𝜔1𝜼
1 + 𝜔2𝜼

2,

where the scalars 𝜔1 and 𝜔2 are the components of 𝝎. Note that

𝝎 (b1) = 𝜔1, and 𝝎 (b2) = 𝜔2 .

In components, the function 𝝎 (v) is therefore evaluated as 𝝎 (v) =
𝑣1𝜔1 + 𝑣2𝜔2. Note that 𝜼𝑖 (v) = 𝑣𝑖 , meaning the basis 1-form 𝜼𝑖

extracts the 𝑖-th component of the vector v.

A.2 Wedge product and 2-forms
We define a second object that acts on tangent vectors of the surface

S, called a 2-form. A 2-form𝝎 is a real-valued function on all ordered

pairs of tangent vectors v, w ∈ 𝑇S𝑃
such that 𝝎 (v,w) is linear in v,

w, and anti-symmetric, i.e., 𝝎 (v,w) = −𝝎 (w, v). The property of

anti-symmetry entails that 𝝎 (v, v) = 0.

It is possible to generate a 2-form from the combination of two

1-forms by defining a new operation between forms, known as the

wedge product, denoted by the symbol ∧. When given two 1-forms

𝝎 and 𝝂 , their wedge product 𝝎 ∧ 𝝂 is defined as the 2-form such

that

(𝝎 ∧ 𝝂) (v,w) = 𝝎 (v)𝝂 (w) − 𝝎 (w)𝝂 (v).
The wedge product 𝝎 ∧𝝂 is linear and anti-symmetric with respect

to the input vectors v, w, and therefore it is a 2-form. Note that this
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definition also leads to a second anti-symmetry property: 𝝎 ∧ 𝝂 =

−𝝂 ∧ 𝝎, which, in turn, implies 𝝎 ∧ 𝝎 = 0.

It is evident that the addition of two 2-forms results in another 2-

form, and similarly, when multiplied by a constant, a 2-form remains

a 2-form. Consequently, 2-forms constitute a vector space, making

it natural to search for a basis for this space. Writing the 1-forms

𝝎 and 𝝂 in a basis {𝜼1,𝜼2} and applying the anti-symmetry of the

wedge product, we get

𝝎 ∧ 𝝂 = (𝜔1𝜼
1 + 𝜔2𝜼

2) ∧ (𝜈1𝜼
1 + 𝜈2𝜼

2)
= 𝜔1𝜈1 𝜼

1∧ 𝜼1 + 𝜔1𝜈2 𝜼
1∧ 𝜼2 + 𝜔2𝜈1 𝜼

2∧ 𝜼1 + 𝜔2𝜈2 𝜼
2∧ 𝜼2

= (𝜔1𝜈2 − 𝜔2𝜈1) 𝜼1∧ 𝜼2 .

We can see that the 2-form𝜼1∧𝜼2
constitutes a basis for the 2-forms

acting on the tangent vectors of 𝑇S𝑃
. Note that the basis comprises

a single element.

More generally, the degree 𝑝 of a 𝑝-form is defined as the number

of its vector inputs. In this view, a scalar function on the surface S
can be interpreted as a 0-form. It is also possible to define forms of

higher degree involving more input vectors by extending the wedge

product to three or more 1-forms. However, in a two-dimensional

space like𝑇S𝑃
, the wedge product of three or more 1-form basis ele-

ments will always contain a repeated element, and as a consequence,

it is always zero. Therefore, in 𝑇S𝑃
the forms of higher degree are

2-forms.

A.3 Exterior derivative
To quantify how much a form varies on the surface S as we move

away from a point 𝑃0 ∈ S, we introduce a powerful tool called the

exterior derivative. Starting with a 0-form 𝑓 (𝑃), where the depen-
dence of 𝑓 on a surface point 𝑃 is explicitly stated, we calculate its

directional derivative along a tangent vector v at a point 𝑃0. To do so,

consider a surface curve C = 𝑃 (𝑟 ), parametrized by a parameter 𝑟 ,

with 𝑃 (0) = 𝑃0 and 𝑃 ′ (0) = v, where prime denotes differentiation

with respect to 𝑟 . The exterior derivative of 𝑓 , denoted as d𝑓 , is
defined as the 1-form such that

d𝑓 (v) = 𝑓 ′ (𝑃 (𝑟 ))
��
𝑟=0

.

We can extend the exterior derivative to forms of higher degrees

as the unique function that maps 𝑝-forms to (𝑝 + 1)-forms with the

properties

d(𝝎 ∧ 𝝂) = d𝝎 ∧ 𝝂 + (−1)𝑘𝝎 ∧ d𝝂, and dd𝝎 = 0, (A.2)

where 𝝎 and 𝝂 are forms of any degree, and 𝑘 is the degree of the

form 𝝎. Considering the wedge product of a scalar with a form as a

multiplication, Equations A.2 also entails

d(𝑓 𝝎) = d𝑓 ∧ 𝝎 + 𝑓 d𝝎 .

To compute the exterior derivative of a 1-form 𝝎, we can first rep-

resent it in a dual-basis {d𝑢, d𝑣} as 𝝎 = 𝜔1d𝑢 + 𝜔2d𝑣 , where 𝑢 and

𝑣 are two scalar functions fulfilling d𝑢 ∧ d𝑣 ≠ 0 (a parametrization).

Then, Equations A.2 yields

d𝝎 = d𝜔1∧ d𝑢 + d𝜔2∧ d𝑣,

where d𝝎 is a 2-form. Since 3-forms vanish on a surface S, the
exterior derivative of a 2-form also vanishes.

A.4 Integration of forms
A𝑝-form is specifically designed for integration over a𝑝-dimensional

domain. For instance, a 0-form is intended for integration (evalua-

tion) at a point, which is 0-dimensional. Moving up a dimension, a

1-form is tailored for integration along oriented lines. In particular,

the integral of a 1-form along a curve C = 𝑃 (𝑡), parametrized by

𝑡 ∈ [𝑡0, 𝑡1], with a velocity tangent vector v(𝑡) = 𝑃 ′ (𝑟 ), is defined
as ∫

C
𝝎 =

∫ 𝑟1

𝑟0

𝝎 (v(𝑟 ))d𝑟 . (A.3)

Similarly, 2-forms are apt for integration over oriented areas.

Consider now a 𝑝-dimensional oriented regionR and its boundary

𝜕R. To illustrate, if R is an oriented line, 𝜕R signifies the endpoints

with consistent orientation. Alternatively, if R represents a 2D re-

gion with an established orientation, 𝜕R becomes the boundary

curve consistently oriented. Let 𝝎 be a 𝑝-form and R a (𝑝 + 1)-
dimensional region, Stokes’ theorem states that∫

𝜕R
𝝎 =

∫
R
d𝝎 . (A.4)

B APPENDIX OF THEOREMS
Proposition 8. Let {C1, C3} be a curve net on a smooth surface

S. Let 𝝎 be a smooth 2-form on S, and let R be a region enclosed by
a net-loop 𝜕R. If ∫

R
𝝎 = 0, for all net-loops 𝜕R,

then 𝝎 = 0 at every point of S.

Proof. Consider a net-loop 𝜕R which bounds a region R home-

omorphic to a disk, orient consistently the curve net inside R, and
consider the dual-basis {𝜼1,𝜼3}. At every point on R, the 2-form
𝝎 can be expressed as 𝝎 = 𝑓 𝜼1∧ 𝜼3

, where 𝑓 is a smooth scalar

function. For a non-degenerate curve net, the 2-form 𝜼1 ∧ 𝜼3
is

consistently oriented and non-vanishing, meaning its integral is

strictly positive (or strictly negative) for every non-empty region

R′ ⊆ R. Suppose, for the sake of contradiction, that 𝑓 is positive (or

negative) at some point within R. Since 𝑓 is smooth, there exists

a smaller region R′ ⊂ R around this point, bounded by a net-loop

𝜕R′
, where 𝑓 is strictly positive (or strictly negative). This would

imply ∫
R′
𝑓 𝜼1∧ 𝜼3 =

∫
R′

𝝎 > 0 (or < 0),

which contradicts the statement. Therefore, since a smooth surface

S can be covered by regions homeomorphic to a disk, 𝑓 must be

identically zero everywhere on S, which implies 𝝎 = 0 at every

point of S. □

Proposition 9. If in an orthogonal curve net {C1, C2} curves C1

are geodesics and curves C2 have constant geodesic curvature along
their path, then the net lies on a surface isometric to a surface of
revolution.

Proof. Consider a surface parametrization 𝑆 (𝑢, 𝑣), where the

𝑢-curves and 𝑣-curves are given respectively by C1
and C2

. Let

𝐸, 𝐹 , and 𝐺 be the coefficients of the first fundamental form of

the parametrization 𝑆 (𝑢, 𝑣), as defined by Equations 4.3. Since this
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parametrization is orthogonal, we have 𝜽 1 =
√
𝐸 d𝑢 and 𝜽 2 =

√
𝐺 d𝑣 .

Considering that 𝜽 1∧𝜽 2 =
√
𝐸𝐺 d𝑢∧d𝑣 , from first Cartan structural

equations 2.13, we get:

𝑔1 = −
𝐸,𝑣

2𝐸
√
𝐺
, 𝑔2 =

𝐺,𝑢

2𝐺
√
𝐸
. (B.1)

Since 𝑔1 = 0, we deduce 𝐸,𝑣 = 0. 𝐸 is then a function of 𝑢 only.

Similarly, since also 𝑔2 is a function of 𝑢 only, the function 𝐺,𝑢/𝐺
depends solely on 𝑢 as well. Let 𝑢𝑎 , 𝑢𝑏 be two parameters within

the 𝑢-domain of the surface. For every fixed 𝑣-parameter 𝑣 ′, we can
then write:∫ 𝑢𝑏

𝑢𝑎

𝐺,𝑢 (𝑢, 𝑣 ′)
𝐺 (𝑢, 𝑣 ′) d𝑢 = ln𝐺 (𝑢𝑏 , 𝑣 ′) − ln𝐺 (𝑢𝑎, 𝑣 ′) = 𝑓 (𝑢), (B.2)

where 𝑓 is a scalar function of 𝑢 only. This implies

𝐺 (𝑢𝑏 , 𝑣 ′)
𝐺 (𝑢𝑎, 𝑣 ′)

= ℎ(𝑢), for any 𝑢𝑎, 𝑢𝑏 , (B.3)

whereℎ is another scalar function of𝑢 only. As shown in Proposition

4.2 of [Wang et al. 2019], Equation B.3, together with 𝑔1 = 0, implies

that the surface 𝑆 (𝑢, 𝑣) is isometric to a surface of revolution. □

Derivations of Theorem 2, Equations 3.14.

d𝑡1 (e1) − d𝑛1 (e2) = 𝑔1 (𝑛2 − 𝑛1) − 2𝑔2𝑡1

= 𝑔1 (𝑛2 − 𝑛1) − 2(𝜅I − 𝜅II ) (𝑔3 csc 2𝛽 − 𝑔1 cot 2𝛽

− d𝛼 (e3) csc 2𝛽) sin 𝛽 cos 𝛽

= (𝜅II − 𝜅I )𝑔1 (cos
2 𝛽 − sin

2 𝛽) + (𝜅II − 𝜅I ) (𝑔3

− 𝑔1 (cos
2 𝛽 − sin

2 𝛽) − d𝛼 (e3))
= (𝜅II − 𝜅I ) (𝑔3 − d𝛼 (e3)) .

d𝑡3 (e3) − d𝑛3 (e4) = 𝑔3 (𝑛2 − 𝑛1) + 2𝑔4𝑡1

= 𝑔3 (𝑛2 − 𝑛1) + 2(𝜅II − 𝜅I ) (𝑔1 csc 2𝛽 − 𝑔3 cot 2𝛽

+ d𝛼 (e1) csc 2𝛽) sin 𝛽 cos 𝛽

= (𝜅II − 𝜅I )𝑔3 (cos
2 𝛽 − sin

2 𝛽) + (𝜅II − 𝜅I ) (𝑔1

− 𝑔3 (cos
2 𝛽 − sin

2 𝛽) + d𝛼 (e1))
= (𝜅II − 𝜅I ) (𝑔1 + d𝛼 (e1)).

C NORMAL CURVATURE-PRESERVING CHEBYSHEV
NETS

The conditions for a surface to admit the existence of a normal

curvature-preserving Chebyshev net have been established by Liu

et al. [2023] (see Table 1). Their proof relies on a mesh discretization

of the net — a quad mesh with equal edge lengths that collapses into

a planar polyline while preserving edge lengths and discrete nor-

mal curvatures, referred to as a generalized C-mesh. The following
theorem establishes the continuous counterpart of these conditions:

Theorem 3. A normal curvature-preserving Chebyshev net exists
only on surfaces of revolution and cylindrical surfaces.

Proof. From Equations 3.14 of Theorem 2, imposing the Cheby-

shev conditions of Proposition 7, we get the additional constraint:

d𝑛1 (e2) = d𝑡1 (e1) . (C.1)

Consider a double frame associatedwith the Chebyshev net {C1, C3},
together with the principal curvature net {C5, C6}. Theorem 2 en-

tails that the principal curvature net bisects the Chebyshev net, and

that 𝑛1 = 𝑛3 and 𝑡1 = 𝑡3 are constant along curves C6
. Let {𝜽 5, 𝜽 6}

be the dual-basis of {e5, e6}. Proposition 2 entails then d𝑛1 ∧ 𝜽 5 = 0

and d𝑡1 ∧ 𝜽 5 = 0. Thus we can write:

d𝑛1 = 𝑓 𝜽 5, d𝑡1 = ℎ 𝜽 5, (C.2)

with 𝑓 and ℎ being two scalar functions. Let 𝛽 be the angle that e1

makes with the principal curvature direction e5. We can then write

e1 = cos 𝛽 e5 − sin 𝛽 e6, e2 = sin 𝛽 e5 + cos 𝛽 e6 .

Plugging these vectors into Equation C.1, with Equations C.2 we

get 𝑓 sin 𝛽 = ℎ cos 𝛽 , and then

d𝑛1 = 𝑓 𝜽 5, d𝑡1 = 𝑓 tan 𝛽 𝜽 5 .

Enforcing the vanishing of the exterior derivative of d𝑛1, we get:

dd𝑛1 = 𝑓 d𝜽5 − d𝑓 (e6) 𝜽 5∧ 𝜽 6 = 0.

Considering that, for Equations 2.13, d𝜽 5 = 𝑔5 𝜽 5∧ 𝜽 6
, this yields

d𝑓 (e6) = 𝑓 𝑔5 . (C.3)

Enforcing now the vanishing of the exterior derivative of d𝑡1, and
using again Equations 2.13, we get:

dd𝑡1 =

(
𝑓 𝑔5 tan 𝛽 − tan 𝛽 d𝑓 (e6) − 𝑓 sec

2𝛽 d𝛽 (e6)
)
𝜽 5∧ 𝜽 6 = 0.

Substituting Equation C.3, this yields:

𝑓 sec
2𝛽 d𝛽 (e6) = 0. (C.4)

If 𝑓 ≠ 0, and therefore d𝑛1 ≠ 0, this implies d𝛽 (e6) = 0. For

Proposition 4, this entails d𝛽 (e1) = d𝛽 (e3). The Chebyshev con-

dition of Equation 3.7 implies then 𝑔1 = −𝑔3. Therefore, summing

Equations 3.9, we get 𝑔5 = 0. Moreover, from Equation 3.10 and

Proposition 3, we deduce d𝑔6 (e6) = 0. From Euler equations 2.9, we

observe that the conditions d𝑛1 (e6) = d𝑡1 (e6) = d𝛽 (e6) = 0 imply

that the principal curvatures 𝜅I , 𝜅II are constant along curves C6
.

Therefore, for Definition 3, d𝑛5 (e6) = d𝑛6 (e6) = 0. Moreover, for

principal curvature lines, we have 𝑡5 = 𝑡6 = 0. From Equations 2.6,

2.7, and 2.8, the conditions 𝑔5 = 𝑡5 = 0 imply 𝜏5 = 0, 𝑛5 = 𝜅5, and

therefore d𝜅5 (e6) = 0. Similarly, d𝑔6 (e6) = d𝑛6 (e6) = 𝑡6 = 0 imply

𝜏6 = 0 and d𝜅6 (e6) = 0. In summary, 𝜏5 = d𝜅5 (e6) = 0 indicates

that curves C5
are congruent and planar, while 𝜏6 = d𝜅6 (e6) = 0

indicates that curves C6
are circular arcs. Thus, since this net is

orthogonal, the surface is a surface of revolution. When 𝜅II = 0, we

obtain a cylindrical surface. □

Corollary 4. A constant normal curvature Chebyshev net exists
only on linear Weingarten surfaces of hyperbolic type.

Proof. In this case, we have d𝑛1 = 0, and therefore Equation C.4

is satisfied for d𝛽 (e6) ≠ 0. Equation C.1 entails d𝑡1 = 0. From

equation 3.16, we observe that the linear relation 𝑎𝐾 + 𝑏𝐻 + 𝑐 = 0

holds on the entire surface with constant coefficients 𝑎, 𝑏 and 𝑐 . □

Corollary 5. An asymptotic Chebyshev net exists only on K-
surfaces.

Proof. We have now 𝑛1 = 0, and therefore 𝑏 = 0. From Corol-

lary 4, we get 𝐾 = −𝑐/𝑎, which is a non-positive constant. □
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